Cargando…

An artificial intelligence-based ecological index for prognostic evaluation of colorectal cancer

BACKGROUND AND OBJECTIVE: In the tumor microenvironment (TME), the dynamic interaction between tumor cells and immune cells plays a critical role in predicting the prognosis of colorectal cancer. This study introduces a novel approach based on artificial intelligence (AI) and immunohistochemistry (I...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Qicong, Cai, Ming, Fan, Xinjuan, Liu, Wenbin, Fang, Gang, Yao, Su, Xu, Yao, Li, Qian, Zhao, Yingnan, Zhao, Ke, Liu, Zaiyi, Chen, Zhihua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10433587/
https://www.ncbi.nlm.nih.gov/pubmed/37592224
http://dx.doi.org/10.1186/s12885-023-11289-0
Descripción
Sumario:BACKGROUND AND OBJECTIVE: In the tumor microenvironment (TME), the dynamic interaction between tumor cells and immune cells plays a critical role in predicting the prognosis of colorectal cancer. This study introduces a novel approach based on artificial intelligence (AI) and immunohistochemistry (IHC)-stained whole-slide images (WSIs) of colorectal cancer (CRC) patients to quantitatively assess the spatial associations between tumor cells and immune cells. To achieve this, we employ the Morisita-Horn ecological index (Mor-index), which allows for a comprehensive analysis of the spatial distribution patterns between tumor cells and immune cells within the TME. MATERIALS AND METHODS: In this study, we employed a combination of deep learning technology and traditional computer segmentation methods to accurately segment the tumor nuclei, immune nuclei, and stroma nuclei within the tumor regions of IHC-stained WSIs. The Mor-index was used to assess the spatial association between tumor cells and immune cells in TME of CRC patients by obtaining the results of cell nuclei segmentation. A discovery cohort (N = 432) and validation cohort (N = 137) were used to evaluate the prognostic value of the Mor-index for overall survival (OS). RESULTS: The efficacy of our method was demonstrated through experiments conducted on two datasets comprising a total of 569 patients. Compared to other studies, our method is not only superior to the QuPath tool but also produces better segmentation results with an accuracy of 0.85. Mor-index was quantified automatically by our method. Survival analysis indicated that the higher Mor-index correlated with better OS in the discovery cohorts (HR for high vs. low 0.49, 95% CI 0.27–0.77, P = 0.0014) and validation cohort (0.21, 0.10–0.46, < 0.0001). CONCLUSION: This study provided a novel AI-based approach to segmenting various nuclei in the TME. The Mor-index can reflect the immune status of CRC patients and is associated with favorable survival. Thus, Mor-index can potentially make a significant role in aiding clinical prognosis and decision-making.