Cargando…

The Impact of Long-Term Macrolide Exposure on the Gut Microbiome and Its Implications for Metabolic Control

Long-term low-dose macrolide therapy is now widely used in the treatment of chronic respiratory diseases for its immune-modulating effects, although the antimicrobial properties of macrolides can also have collateral impacts on the gut microbiome. We investigated whether such treatment altered intes...

Descripción completa

Detalles Bibliográficos
Autores principales: Choo, Jocelyn M., Martin, Alyce M., Taylor, Steven L., Sun, Emily, Mobegi, Fredrick M., Kanno, Tokuwa, Richard, Alyson, Burr, Lucy D., Lingman, Stevie, Martin, Megan, Keating, Damien J., Mason, A. James, Rogers, Geraint B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10433835/
https://www.ncbi.nlm.nih.gov/pubmed/37347185
http://dx.doi.org/10.1128/spectrum.00831-23
Descripción
Sumario:Long-term low-dose macrolide therapy is now widely used in the treatment of chronic respiratory diseases for its immune-modulating effects, although the antimicrobial properties of macrolides can also have collateral impacts on the gut microbiome. We investigated whether such treatment altered intestinal commensal microbiology and whether any such changes affected systemic immune and metabolic regulation. In healthy adults exposed to 4 weeks of low-dose erythromycin or azithromycin, as used clinically, we observed consistent shifts in gut microbiome composition, with a reduction in microbial capacity related to carbohydrate metabolism and short-chain fatty acid biosynthesis. These changes were accompanied by alterations in systemic biomarkers relating to immune (interleukin 5 [IL-5], IL-10, monocyte chemoattractant protein 1 [MCP-1]) and metabolic (serotonin [5-HT], C-peptide) homeostasis. Transplantation of erythromycin-exposed murine microbiota into germ-free mice demonstrated that changes in metabolic homeostasis and gastrointestinal motility, but not systemic immune regulation, resulted from changes in intestinal microbiology caused by macrolide treatment. Our findings highlight the potential for long-term low-dose macrolide therapy to influence host physiology via alteration of the gut microbiome. IMPORTANCE Long-term macrolide therapy is widely used in chronic respiratory diseases although its antibacterial activity can also affect the gut microbiota, a key regulator of host physiology. Macrolide-associated studies on the gut microbiota have been limited to short antibiotic courses and have not examined its consequences for host immune and metabolic regulation. This study revealed that long-term macrolides depleted keystone bacteria and impacted host regulation, mediated directly by macrolide activity or indirectly by alterations to the gut microbiota. Understanding these macrolide-associated mechanisms will contribute to identifying the risk of long-term exposure and highlights the importance of targeted therapy for maintenance of the gut microbiota.