Cargando…

Short- and Long-Read Sequencing Reveals the Presence and Evolution of an IncF Plasmid Harboring bla(CTX-M-15) and bla(CTX-M-27) Genes in Escherichia coli ST131

Escherichia coli sequence type 131 (ST131) has contributed to the spread of extended-spectrum beta-lactamase (ESBL) and has emerged as the dominant cause of hospital- and community-acquired urinary tract infections. Here, we report for the first time an in-depth analysis of whole-genome sequencing (...

Descripción completa

Detalles Bibliográficos
Autores principales: Cave, Rory, Ter-Stepanyan, Mary M., Mkrtchyan, Hermine V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10433869/
https://www.ncbi.nlm.nih.gov/pubmed/37466446
http://dx.doi.org/10.1128/spectrum.00356-23
_version_ 1785091747307585536
author Cave, Rory
Ter-Stepanyan, Mary M.
Mkrtchyan, Hermine V.
author_facet Cave, Rory
Ter-Stepanyan, Mary M.
Mkrtchyan, Hermine V.
author_sort Cave, Rory
collection PubMed
description Escherichia coli sequence type 131 (ST131) has contributed to the spread of extended-spectrum beta-lactamase (ESBL) and has emerged as the dominant cause of hospital- and community-acquired urinary tract infections. Here, we report for the first time an in-depth analysis of whole-genome sequencing (WGS) of 4 ESBL-producing E. coli ST131 isolates recovered from patients in two hospitals in Armenia using Illumina short-read sequencing for accurate base calling to determine their genotype and to infer their phylogeny and using Oxford Nanopore Technologies long-read sequencing to resolve plasmid and chromosomal genetic elements. Genotypically, the four Armenian isolates were identified as part of the H30Rx/clade C2 (n = 2) and H41/clade A (n = 2) lineages and were phylogenetically closely related to isolates from the European Nucleotide Archive (ENA) database previously recovered from patients in the United States, Australia, and New Zealand. The Armenian isolates recovered in this study had chromosomal integration of the bla(CTX-M-15) gene in the H30Rx isolates and a high number of virulence genes found in the H41 isolates associated with the carriage of a rare genomic island (in the context of E. coli ST131) containing the S fimbrial, salmochelin siderophore, and microcin H47 virulence genes. Furthermore, our data show the evolution of the IncF[2:A2:B20] plasmid harboring both bla(CTX)(-M-15) and bla(CTX-M-27) genes, derived from the recombination of genes from an IncF[F2:A−:B−] bla(CTX-M-15)-associated plasmid into the IncF[F1:A2:B20] bla(CTX-M-27)-associated plasmid backbone seen in two genetically closely related H41 Armenian isolates. IMPORTANCE Combining short and long reads from whole-genome sequencing analysis provided a genetic context for uncommon genes of clinical importance to better understand transmission and evolutionary features of ESBL-producing uropathogenic E. coli (UPEC) ST131 isolates recovered in Armenia. Using hybrid genome assembly in countries lacking genomic surveillance studies can inform us about new lineages not seen in other countries with genes encoding high virulence and antibiotic resistance harbored on mobile genetic elements.
format Online
Article
Text
id pubmed-10433869
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-104338692023-08-18 Short- and Long-Read Sequencing Reveals the Presence and Evolution of an IncF Plasmid Harboring bla(CTX-M-15) and bla(CTX-M-27) Genes in Escherichia coli ST131 Cave, Rory Ter-Stepanyan, Mary M. Mkrtchyan, Hermine V. Microbiol Spectr Research Article Escherichia coli sequence type 131 (ST131) has contributed to the spread of extended-spectrum beta-lactamase (ESBL) and has emerged as the dominant cause of hospital- and community-acquired urinary tract infections. Here, we report for the first time an in-depth analysis of whole-genome sequencing (WGS) of 4 ESBL-producing E. coli ST131 isolates recovered from patients in two hospitals in Armenia using Illumina short-read sequencing for accurate base calling to determine their genotype and to infer their phylogeny and using Oxford Nanopore Technologies long-read sequencing to resolve plasmid and chromosomal genetic elements. Genotypically, the four Armenian isolates were identified as part of the H30Rx/clade C2 (n = 2) and H41/clade A (n = 2) lineages and were phylogenetically closely related to isolates from the European Nucleotide Archive (ENA) database previously recovered from patients in the United States, Australia, and New Zealand. The Armenian isolates recovered in this study had chromosomal integration of the bla(CTX-M-15) gene in the H30Rx isolates and a high number of virulence genes found in the H41 isolates associated with the carriage of a rare genomic island (in the context of E. coli ST131) containing the S fimbrial, salmochelin siderophore, and microcin H47 virulence genes. Furthermore, our data show the evolution of the IncF[2:A2:B20] plasmid harboring both bla(CTX)(-M-15) and bla(CTX-M-27) genes, derived from the recombination of genes from an IncF[F2:A−:B−] bla(CTX-M-15)-associated plasmid into the IncF[F1:A2:B20] bla(CTX-M-27)-associated plasmid backbone seen in two genetically closely related H41 Armenian isolates. IMPORTANCE Combining short and long reads from whole-genome sequencing analysis provided a genetic context for uncommon genes of clinical importance to better understand transmission and evolutionary features of ESBL-producing uropathogenic E. coli (UPEC) ST131 isolates recovered in Armenia. Using hybrid genome assembly in countries lacking genomic surveillance studies can inform us about new lineages not seen in other countries with genes encoding high virulence and antibiotic resistance harbored on mobile genetic elements. American Society for Microbiology 2023-07-19 /pmc/articles/PMC10433869/ /pubmed/37466446 http://dx.doi.org/10.1128/spectrum.00356-23 Text en Copyright © 2023 Cave et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Cave, Rory
Ter-Stepanyan, Mary M.
Mkrtchyan, Hermine V.
Short- and Long-Read Sequencing Reveals the Presence and Evolution of an IncF Plasmid Harboring bla(CTX-M-15) and bla(CTX-M-27) Genes in Escherichia coli ST131
title Short- and Long-Read Sequencing Reveals the Presence and Evolution of an IncF Plasmid Harboring bla(CTX-M-15) and bla(CTX-M-27) Genes in Escherichia coli ST131
title_full Short- and Long-Read Sequencing Reveals the Presence and Evolution of an IncF Plasmid Harboring bla(CTX-M-15) and bla(CTX-M-27) Genes in Escherichia coli ST131
title_fullStr Short- and Long-Read Sequencing Reveals the Presence and Evolution of an IncF Plasmid Harboring bla(CTX-M-15) and bla(CTX-M-27) Genes in Escherichia coli ST131
title_full_unstemmed Short- and Long-Read Sequencing Reveals the Presence and Evolution of an IncF Plasmid Harboring bla(CTX-M-15) and bla(CTX-M-27) Genes in Escherichia coli ST131
title_short Short- and Long-Read Sequencing Reveals the Presence and Evolution of an IncF Plasmid Harboring bla(CTX-M-15) and bla(CTX-M-27) Genes in Escherichia coli ST131
title_sort short- and long-read sequencing reveals the presence and evolution of an incf plasmid harboring bla(ctx-m-15) and bla(ctx-m-27) genes in escherichia coli st131
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10433869/
https://www.ncbi.nlm.nih.gov/pubmed/37466446
http://dx.doi.org/10.1128/spectrum.00356-23
work_keys_str_mv AT caverory shortandlongreadsequencingrevealsthepresenceandevolutionofanincfplasmidharboringblactxm15andblactxm27genesinescherichiacolist131
AT terstepanyanmarym shortandlongreadsequencingrevealsthepresenceandevolutionofanincfplasmidharboringblactxm15andblactxm27genesinescherichiacolist131
AT mkrtchyanherminev shortandlongreadsequencingrevealsthepresenceandevolutionofanincfplasmidharboringblactxm15andblactxm27genesinescherichiacolist131