Cargando…
Tissues and mechanisms associated with Verticillium wilt resistance in tomato using bi-grafted near-isogenic lines
Host resistance is the primary means to control Verticillium dahliae, a soil-borne pathogen causing major losses on a broad range of plants, including tomato. The tissues and mechanisms responsible for resistance remain obscure. In the field, resistant tomato used as rootstocks does not confer resis...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10433936/ https://www.ncbi.nlm.nih.gov/pubmed/37184211 http://dx.doi.org/10.1093/jxb/erad182 |
_version_ | 1785091763727237120 |
---|---|
author | Oh, Yeonyee Ingram, Thomas Shekasteband, Reza Adhikari, Tika Louws, Frank J Dean, Ralph A |
author_facet | Oh, Yeonyee Ingram, Thomas Shekasteband, Reza Adhikari, Tika Louws, Frank J Dean, Ralph A |
author_sort | Oh, Yeonyee |
collection | PubMed |
description | Host resistance is the primary means to control Verticillium dahliae, a soil-borne pathogen causing major losses on a broad range of plants, including tomato. The tissues and mechanisms responsible for resistance remain obscure. In the field, resistant tomato used as rootstocks does not confer resistance. Here, we created bi-grafted plants with near-isogenic lines (NILs) exhibiting (Ve1) or lacking (ve1) resistance to V. dahliae race 1. Ten days after inoculation, scion and rootstock tissues were subjected to differential gene expression and co-expression network analyses. Symptoms only developed in susceptible scions regardless of the rootstock. Infection caused more dramatic alteration of tomato gene expression in susceptible compared with resistant tissues, including pathogen receptor, signaling pathway, pathogenesis-related protein, and cell wall modification genes. Differences were observed between scions and rootstocks, primarily related to physiological processes in these tissues. Gene expression in scions was influenced by the rootstock genotype. A few genes were associated with the Ve1 genotype, which was independent of infection or tissue type. Several were physically clustered, some near the Ve1 locus on chromosome 9. Transcripts mapped to V. dahliae were dominated by secreted candidate effector proteins. These findings advance knowledge of molecular mechanisms underlying the tomato–V. dahliae interaction. |
format | Online Article Text |
id | pubmed-10433936 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-104339362023-08-18 Tissues and mechanisms associated with Verticillium wilt resistance in tomato using bi-grafted near-isogenic lines Oh, Yeonyee Ingram, Thomas Shekasteband, Reza Adhikari, Tika Louws, Frank J Dean, Ralph A J Exp Bot Research Papers Host resistance is the primary means to control Verticillium dahliae, a soil-borne pathogen causing major losses on a broad range of plants, including tomato. The tissues and mechanisms responsible for resistance remain obscure. In the field, resistant tomato used as rootstocks does not confer resistance. Here, we created bi-grafted plants with near-isogenic lines (NILs) exhibiting (Ve1) or lacking (ve1) resistance to V. dahliae race 1. Ten days after inoculation, scion and rootstock tissues were subjected to differential gene expression and co-expression network analyses. Symptoms only developed in susceptible scions regardless of the rootstock. Infection caused more dramatic alteration of tomato gene expression in susceptible compared with resistant tissues, including pathogen receptor, signaling pathway, pathogenesis-related protein, and cell wall modification genes. Differences were observed between scions and rootstocks, primarily related to physiological processes in these tissues. Gene expression in scions was influenced by the rootstock genotype. A few genes were associated with the Ve1 genotype, which was independent of infection or tissue type. Several were physically clustered, some near the Ve1 locus on chromosome 9. Transcripts mapped to V. dahliae were dominated by secreted candidate effector proteins. These findings advance knowledge of molecular mechanisms underlying the tomato–V. dahliae interaction. Oxford University Press 2023-05-15 /pmc/articles/PMC10433936/ /pubmed/37184211 http://dx.doi.org/10.1093/jxb/erad182 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Papers Oh, Yeonyee Ingram, Thomas Shekasteband, Reza Adhikari, Tika Louws, Frank J Dean, Ralph A Tissues and mechanisms associated with Verticillium wilt resistance in tomato using bi-grafted near-isogenic lines |
title | Tissues and mechanisms associated with Verticillium wilt resistance in tomato using bi-grafted near-isogenic lines |
title_full | Tissues and mechanisms associated with Verticillium wilt resistance in tomato using bi-grafted near-isogenic lines |
title_fullStr | Tissues and mechanisms associated with Verticillium wilt resistance in tomato using bi-grafted near-isogenic lines |
title_full_unstemmed | Tissues and mechanisms associated with Verticillium wilt resistance in tomato using bi-grafted near-isogenic lines |
title_short | Tissues and mechanisms associated with Verticillium wilt resistance in tomato using bi-grafted near-isogenic lines |
title_sort | tissues and mechanisms associated with verticillium wilt resistance in tomato using bi-grafted near-isogenic lines |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10433936/ https://www.ncbi.nlm.nih.gov/pubmed/37184211 http://dx.doi.org/10.1093/jxb/erad182 |
work_keys_str_mv | AT ohyeonyee tissuesandmechanismsassociatedwithverticilliumwiltresistanceintomatousingbigraftednearisogeniclines AT ingramthomas tissuesandmechanismsassociatedwithverticilliumwiltresistanceintomatousingbigraftednearisogeniclines AT shekastebandreza tissuesandmechanismsassociatedwithverticilliumwiltresistanceintomatousingbigraftednearisogeniclines AT adhikaritika tissuesandmechanismsassociatedwithverticilliumwiltresistanceintomatousingbigraftednearisogeniclines AT louwsfrankj tissuesandmechanismsassociatedwithverticilliumwiltresistanceintomatousingbigraftednearisogeniclines AT deanralpha tissuesandmechanismsassociatedwithverticilliumwiltresistanceintomatousingbigraftednearisogeniclines |