Cargando…
Lymph node medulla regulates the spatiotemporal unfolding of resident dendritic cell networks
Unlike macrophage networks composed of long-lived tissue-resident cells within specific niches, conventional dendritic cells (cDCs) that generate a 3D network in lymph nodes (LNs) are short lived and continuously replaced by DC precursors (preDCs) from the bone marrow (BM). Here, we examined whether...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10433941/ https://www.ncbi.nlm.nih.gov/pubmed/37463581 http://dx.doi.org/10.1016/j.immuni.2023.06.020 |
_version_ | 1785091764939390976 |
---|---|
author | Ugur, Milas Labios, R. Jacob Fenton, Chloe Knöpper, Konrad Jobin, Katarzyna Imdahl, Fabian Golda, Gosia Hoh, Kathrin Grafen, Anika Kaisho, Tsuneyasu Saliba, Antoine-Emmanuel Grün, Dominic Gasteiger, Georg Bajénoff, Marc Kastenmüller, Wolfgang |
author_facet | Ugur, Milas Labios, R. Jacob Fenton, Chloe Knöpper, Konrad Jobin, Katarzyna Imdahl, Fabian Golda, Gosia Hoh, Kathrin Grafen, Anika Kaisho, Tsuneyasu Saliba, Antoine-Emmanuel Grün, Dominic Gasteiger, Georg Bajénoff, Marc Kastenmüller, Wolfgang |
author_sort | Ugur, Milas |
collection | PubMed |
description | Unlike macrophage networks composed of long-lived tissue-resident cells within specific niches, conventional dendritic cells (cDCs) that generate a 3D network in lymph nodes (LNs) are short lived and continuously replaced by DC precursors (preDCs) from the bone marrow (BM). Here, we examined whether specific anatomical niches exist within which preDCs differentiate toward immature cDCs. In situ photoconversion and Prtn3-based fate-tracking revealed that the LN medullary cords are preferential entry sites for preDCs, serving as specific differentiation niches. Repopulation and fate-tracking approaches demonstrated that the cDC1 network unfolded from the medulla along the vascular tree toward the paracortex. During inflammation, collective maturation and migration of resident cDC1s to the paracortex created discontinuity in the medullary cDC1 network and temporarily impaired responsiveness. The decrease in local cDC1 density resulted in higher Flt3L availability in the medullary niche, which accelerated cDC1 development to restore the network. Thus, the spatiotemporal development of the cDC1 network is locally regulated in dedicated LN niches via sensing of cDC1 densities. |
format | Online Article Text |
id | pubmed-10433941 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-104339412023-08-18 Lymph node medulla regulates the spatiotemporal unfolding of resident dendritic cell networks Ugur, Milas Labios, R. Jacob Fenton, Chloe Knöpper, Konrad Jobin, Katarzyna Imdahl, Fabian Golda, Gosia Hoh, Kathrin Grafen, Anika Kaisho, Tsuneyasu Saliba, Antoine-Emmanuel Grün, Dominic Gasteiger, Georg Bajénoff, Marc Kastenmüller, Wolfgang Immunity Article Unlike macrophage networks composed of long-lived tissue-resident cells within specific niches, conventional dendritic cells (cDCs) that generate a 3D network in lymph nodes (LNs) are short lived and continuously replaced by DC precursors (preDCs) from the bone marrow (BM). Here, we examined whether specific anatomical niches exist within which preDCs differentiate toward immature cDCs. In situ photoconversion and Prtn3-based fate-tracking revealed that the LN medullary cords are preferential entry sites for preDCs, serving as specific differentiation niches. Repopulation and fate-tracking approaches demonstrated that the cDC1 network unfolded from the medulla along the vascular tree toward the paracortex. During inflammation, collective maturation and migration of resident cDC1s to the paracortex created discontinuity in the medullary cDC1 network and temporarily impaired responsiveness. The decrease in local cDC1 density resulted in higher Flt3L availability in the medullary niche, which accelerated cDC1 development to restore the network. Thus, the spatiotemporal development of the cDC1 network is locally regulated in dedicated LN niches via sensing of cDC1 densities. Cell Press 2023-08-08 /pmc/articles/PMC10433941/ /pubmed/37463581 http://dx.doi.org/10.1016/j.immuni.2023.06.020 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Ugur, Milas Labios, R. Jacob Fenton, Chloe Knöpper, Konrad Jobin, Katarzyna Imdahl, Fabian Golda, Gosia Hoh, Kathrin Grafen, Anika Kaisho, Tsuneyasu Saliba, Antoine-Emmanuel Grün, Dominic Gasteiger, Georg Bajénoff, Marc Kastenmüller, Wolfgang Lymph node medulla regulates the spatiotemporal unfolding of resident dendritic cell networks |
title | Lymph node medulla regulates the spatiotemporal unfolding of resident dendritic cell networks |
title_full | Lymph node medulla regulates the spatiotemporal unfolding of resident dendritic cell networks |
title_fullStr | Lymph node medulla regulates the spatiotemporal unfolding of resident dendritic cell networks |
title_full_unstemmed | Lymph node medulla regulates the spatiotemporal unfolding of resident dendritic cell networks |
title_short | Lymph node medulla regulates the spatiotemporal unfolding of resident dendritic cell networks |
title_sort | lymph node medulla regulates the spatiotemporal unfolding of resident dendritic cell networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10433941/ https://www.ncbi.nlm.nih.gov/pubmed/37463581 http://dx.doi.org/10.1016/j.immuni.2023.06.020 |
work_keys_str_mv | AT ugurmilas lymphnodemedullaregulatesthespatiotemporalunfoldingofresidentdendriticcellnetworks AT labiosrjacob lymphnodemedullaregulatesthespatiotemporalunfoldingofresidentdendriticcellnetworks AT fentonchloe lymphnodemedullaregulatesthespatiotemporalunfoldingofresidentdendriticcellnetworks AT knopperkonrad lymphnodemedullaregulatesthespatiotemporalunfoldingofresidentdendriticcellnetworks AT jobinkatarzyna lymphnodemedullaregulatesthespatiotemporalunfoldingofresidentdendriticcellnetworks AT imdahlfabian lymphnodemedullaregulatesthespatiotemporalunfoldingofresidentdendriticcellnetworks AT goldagosia lymphnodemedullaregulatesthespatiotemporalunfoldingofresidentdendriticcellnetworks AT hohkathrin lymphnodemedullaregulatesthespatiotemporalunfoldingofresidentdendriticcellnetworks AT grafenanika lymphnodemedullaregulatesthespatiotemporalunfoldingofresidentdendriticcellnetworks AT kaishotsuneyasu lymphnodemedullaregulatesthespatiotemporalunfoldingofresidentdendriticcellnetworks AT salibaantoineemmanuel lymphnodemedullaregulatesthespatiotemporalunfoldingofresidentdendriticcellnetworks AT grundominic lymphnodemedullaregulatesthespatiotemporalunfoldingofresidentdendriticcellnetworks AT gasteigergeorg lymphnodemedullaregulatesthespatiotemporalunfoldingofresidentdendriticcellnetworks AT bajenoffmarc lymphnodemedullaregulatesthespatiotemporalunfoldingofresidentdendriticcellnetworks AT kastenmullerwolfgang lymphnodemedullaregulatesthespatiotemporalunfoldingofresidentdendriticcellnetworks |