Cargando…
A Machine Learning-Based Analytic Pipeline Applied to Clinical and Serum IgG Immunoproteome Data To Predict Chlamydia trachomatis Genital Tract Ascension and Incident Infection in Women
We developed a reusable and open-source machine learning (ML) pipeline that can provide an analytical framework for rigorous biomarker discovery. We implemented the ML pipeline to determine the predictive potential of clinical and immunoproteome antibody data for outcomes associated with Chlamydia t...
Autores principales: | Liu, Chuwen, Mokashi, Neha Vivek, Darville, Toni, Sun, Xuejun, O’Connell, Catherine M., Hufnagel, Katrin, Waterboer, Tim, Zheng, Xiaojing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10434056/ https://www.ncbi.nlm.nih.gov/pubmed/37318345 http://dx.doi.org/10.1128/spectrum.04689-22 |
Ejemplares similares
-
Chlamydia trachomatis Genital
Infections
por: O’Connell, Catherine M., et al.
Publicado: (2016) -
Genital Chlamydia trachomatis: An update
por: Malhotra, Meenakshi, et al.
Publicado: (2013) -
Discovery of Human-Specific Immunodominant Chlamydia trachomatis B Cell Epitopes
por: Rahman, K. Shamsur, et al.
Publicado: (2018) -
Chlamydia trachomatis Whole-Proteome Microarray Analysis of The Netherlands Chlamydia Cohort Study
por: Hufnagel, Katrin, et al.
Publicado: (2019) -
Plasmid-mediated virulence in Chlamydia
por: Turman, Breanna J., et al.
Publicado: (2023)