Cargando…

N-Linked Glycosylation and Expression of Duck Plague Virus pUL10 Promoted by pUL49.5

Duck plague virus (DPV) is a member of the alphaherpesvirus subfamily, and its genome encodes a conserved envelope protein, protein UL10 (pUL10). pUL10 plays complex roles in viral fusion, assembly, cell-to-cell spread, and immune evasion, which are closely related to its protein characteristics and...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Chunmei, Wang, Mingshu, Cheng, Anchun, Wu, Ying, Tian, Bin, Yang, Qiao, Gao, Qun, Sun, Di, Zhang, Shaqiu, Ou, Xumin, He, Yu, Huang, Juan, Zhao, Xinxin, Chen, Shun, Zhu, Dekang, Liu, Mafeng, Jia, Renyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10434065/
https://www.ncbi.nlm.nih.gov/pubmed/37378543
http://dx.doi.org/10.1128/spectrum.01625-23
Descripción
Sumario:Duck plague virus (DPV) is a member of the alphaherpesvirus subfamily, and its genome encodes a conserved envelope protein, protein UL10 (pUL10). pUL10 plays complex roles in viral fusion, assembly, cell-to-cell spread, and immune evasion, which are closely related to its protein characteristics and partners. Few studies have been conducted on DPV pUL10. In this study, we identified the characteristics of pUL10, such as the type of glycosylation modification and subcellular localization. The characteristic differences in pUL10 in transfection and infection suggest that there are other viral proteins that participate in pUL10 modification and localization. Therefore, pUL49.5, the interaction partner of pUL10, was explored. We found that pUL10 interacts with pUL49.5 during transfection and infection. Their interaction entailed multiple interaction sites, including noncovalent forces in the pUL49.5 N-terminal domains and C-terminal domains and a covalent disulfide bond between two conserved cysteines. pUL49.5 promoted pUL10 expression and mature N-linked glycosylation modification. Moreover, deletion of UL49.5 in DPV caused the molecular mass of pUL10 to decrease by approximately3 to 10 kDa, which suggested that pUL49.5 was the main factor affecting the N-linked glycosylation of DPV pUL10 during infection. This study provides a basis for future exploration of the effect of pUL10 glycosylation on virus proliferation. IMPORTANCE Duck plague is a disease with high morbidity and mortality rates, and it causes great losses for the duck breeding industry. Duck plague virus (DPV) is the causative agent of duck plague, and DPV UL10 protein (pUL10) is a homolog of glycoprotein M (gM), which is conserved in herpesviruses. pUL10 plays complex roles in viral fusion, assembly, cell-to-cell spread, and immune evasion, which are closely related to its protein characteristics and partners. In this study, we systematically explored whether pUL49.5 (a partner of pUL10) plays roles in the localization, modification, and expression of pUL10.