Cargando…

Degradation of zearalenone by microorganisms and enzymes

Mycotoxins are toxic metabolites produced by fungi that may cause serious health problems in humans and animals. Zearalenone is a secondary metabolite produced by fungi of the genus Fusarium, widely exists in animal feed and human food. One concern with the use of microbial strains and their enzyme...

Descripción completa

Detalles Bibliográficos
Autores principales: Gari, Jiregna, Abdella, Rahma
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10434127/
https://www.ncbi.nlm.nih.gov/pubmed/37601268
http://dx.doi.org/10.7717/peerj.15808
Descripción
Sumario:Mycotoxins are toxic metabolites produced by fungi that may cause serious health problems in humans and animals. Zearalenone is a secondary metabolite produced by fungi of the genus Fusarium, widely exists in animal feed and human food. One concern with the use of microbial strains and their enzyme derivatives for zearalenone degradation is the potential variability in the effectiveness of the degradation process. The efficiency of degradation may depend on various factors such as the type and concentration of zearalenone, the properties of the microbial strains and enzymes, and the environmental conditions. Therefore, it is important to carefully evaluate the efficacy of these methods under different conditions and ensure their reproducibility. Another important consideration is the safety and potential side effects of using microbial strains and enzymes for zearalenone degradation. It is necessary to evaluate the potential risks associated with the use of genetically modified microorganisms or recombinant enzymes, including their potential impact on the environment and non-target organisms. Additionally, it is important to ensure that the degradation products are indeed harmless and do not pose any health risks to humans or animals. Furthermore, while the use of microbial strains and enzymes may offer an environmentally friendly and cost-effective solution for zearalenone degradation, it is important to explore other methods such as physical or chemical treatments as well. These methods may offer complementary approaches for zearalenone detoxification, and their combination with microbial or enzyme-based methods may improve overall efficacy. Overall, the research on the biodegradation of zearalenone using microorganisms and enzyme derivatives is promising, but there are important considerations that need to be addressed to ensure the safety and effectiveness of these methods. Development of recombinant enzymes improves enzymatic detoxification of zearalenone to a non-toxic product without damaging the nutritional content. This review summarizes biodegradation of zearalenone using microorganisms and enzyme derivatives to nontoxic products. Further research is needed to fully evaluate the potential of these methods for mitigating the impact of mycotoxins in food and feed.