Cargando…

Glyoxylate Shunt and Pyruvate-to-Acetoin Shift Are Specific Stress Responses Induced by Colistin and Ceragenin CSA-13 in Enterobacter hormaechei ST89

Ceragenins, including CSA-13, are cationic antimicrobials that target the bacterial cell envelope differently than colistin. However, the molecular basis of their action is not fully understood. Here, we examined the genomic and transcriptome responses by Enterobacter hormaechei after prolonged expo...

Descripción completa

Detalles Bibliográficos
Autores principales: Prasad, Suhanya V., Fiedoruk, Krzysztof, Zakrzewska, Magdalena, Savage, Paul B., Bucki, Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10434160/
https://www.ncbi.nlm.nih.gov/pubmed/37338344
http://dx.doi.org/10.1128/spectrum.01215-23
_version_ 1785091821507969024
author Prasad, Suhanya V.
Fiedoruk, Krzysztof
Zakrzewska, Magdalena
Savage, Paul B.
Bucki, Robert
author_facet Prasad, Suhanya V.
Fiedoruk, Krzysztof
Zakrzewska, Magdalena
Savage, Paul B.
Bucki, Robert
author_sort Prasad, Suhanya V.
collection PubMed
description Ceragenins, including CSA-13, are cationic antimicrobials that target the bacterial cell envelope differently than colistin. However, the molecular basis of their action is not fully understood. Here, we examined the genomic and transcriptome responses by Enterobacter hormaechei after prolonged exposure to either CSA-13 or colistin. Resistance of the E. hormaechei 4236 strain (sequence type 89 [ST89]) to colistin and CSA-13 was induced in vitro during serial passages with sublethal doses of tested agents. The genomic and metabolic profiles of the tested isolates were characterized using a combination of whole-genome sequencing (WGS) and transcriptome sequencing (RNA-seq), followed by metabolic mapping of differentially expressed genes using Pathway Tools software. The exposure of E. hormaechei to colistin resulted in the deletion of the mgrB gene, whereas CSA-13 disrupted the genes encoding an outer membrane protein C and transcriptional regulator SmvR. Both compounds upregulated several colistin-resistant genes, such as the arnABCDEF operon and pagE, including genes coding for DedA proteins. The latter proteins, along with beta-barrel protein YfaZ and VirK/YbjX family proteins, were the top overexpressed cell envelope proteins. Furthermore, the l-arginine biosynthesis pathway and putrescine-ornithine antiporter PotE were downregulated in both transcriptomes. In contrast, the expression of two pyruvate transporters (YhjX and YjiY) and genes involved in pyruvate metabolism, as well as genes involved in generating proton motive force (PMF), was antimicrobial specific. Despite the similarity of the cell envelope transcriptomes, distinctly remodeled carbon metabolism (i.e., toward fermentation of pyruvate to acetoin [colistin] and to the glyoxylate pathway [CSA-13]) distinguished both antimicrobials, which possibly reflects the intensity of the stress exerted by both agents. IMPORTANCE Colistin and ceragenins, like CSA-13, are cationic antimicrobials that disrupt the bacterial cell envelope through different mechanisms. Here, we examined the genomic and transcriptome changes in Enterobacter hormaechei ST89, an emerging hospital pathogen, after prolonged exposure to these agents to identify potential resistance mechanisms. Interestingly, we observed downregulation of genes associated with acid stress response as well as distinct dysregulation of genes involved in carbon metabolism, resulting in a switch from pyruvate fermentation to acetoin (colistin) and the glyoxylate pathway (CSA-13). Therefore, we hypothesize that repression of the acid stress response, which alkalinizes cytoplasmic pH and, in turn, suppresses resistance to cationic antimicrobials, could be interpreted as an adaptation that prevents alkalinization of cytoplasmic pH in emergencies induced by colistin and CSA-13. Consequently, this alteration critical for cell physiology must be compensated via remodeling carbon and/or amino acid metabolism to limit acidic by-product production.
format Online
Article
Text
id pubmed-10434160
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-104341602023-08-18 Glyoxylate Shunt and Pyruvate-to-Acetoin Shift Are Specific Stress Responses Induced by Colistin and Ceragenin CSA-13 in Enterobacter hormaechei ST89 Prasad, Suhanya V. Fiedoruk, Krzysztof Zakrzewska, Magdalena Savage, Paul B. Bucki, Robert Microbiol Spectr Research Article Ceragenins, including CSA-13, are cationic antimicrobials that target the bacterial cell envelope differently than colistin. However, the molecular basis of their action is not fully understood. Here, we examined the genomic and transcriptome responses by Enterobacter hormaechei after prolonged exposure to either CSA-13 or colistin. Resistance of the E. hormaechei 4236 strain (sequence type 89 [ST89]) to colistin and CSA-13 was induced in vitro during serial passages with sublethal doses of tested agents. The genomic and metabolic profiles of the tested isolates were characterized using a combination of whole-genome sequencing (WGS) and transcriptome sequencing (RNA-seq), followed by metabolic mapping of differentially expressed genes using Pathway Tools software. The exposure of E. hormaechei to colistin resulted in the deletion of the mgrB gene, whereas CSA-13 disrupted the genes encoding an outer membrane protein C and transcriptional regulator SmvR. Both compounds upregulated several colistin-resistant genes, such as the arnABCDEF operon and pagE, including genes coding for DedA proteins. The latter proteins, along with beta-barrel protein YfaZ and VirK/YbjX family proteins, were the top overexpressed cell envelope proteins. Furthermore, the l-arginine biosynthesis pathway and putrescine-ornithine antiporter PotE were downregulated in both transcriptomes. In contrast, the expression of two pyruvate transporters (YhjX and YjiY) and genes involved in pyruvate metabolism, as well as genes involved in generating proton motive force (PMF), was antimicrobial specific. Despite the similarity of the cell envelope transcriptomes, distinctly remodeled carbon metabolism (i.e., toward fermentation of pyruvate to acetoin [colistin] and to the glyoxylate pathway [CSA-13]) distinguished both antimicrobials, which possibly reflects the intensity of the stress exerted by both agents. IMPORTANCE Colistin and ceragenins, like CSA-13, are cationic antimicrobials that disrupt the bacterial cell envelope through different mechanisms. Here, we examined the genomic and transcriptome changes in Enterobacter hormaechei ST89, an emerging hospital pathogen, after prolonged exposure to these agents to identify potential resistance mechanisms. Interestingly, we observed downregulation of genes associated with acid stress response as well as distinct dysregulation of genes involved in carbon metabolism, resulting in a switch from pyruvate fermentation to acetoin (colistin) and the glyoxylate pathway (CSA-13). Therefore, we hypothesize that repression of the acid stress response, which alkalinizes cytoplasmic pH and, in turn, suppresses resistance to cationic antimicrobials, could be interpreted as an adaptation that prevents alkalinization of cytoplasmic pH in emergencies induced by colistin and CSA-13. Consequently, this alteration critical for cell physiology must be compensated via remodeling carbon and/or amino acid metabolism to limit acidic by-product production. American Society for Microbiology 2023-06-20 /pmc/articles/PMC10434160/ /pubmed/37338344 http://dx.doi.org/10.1128/spectrum.01215-23 Text en Copyright © 2023 Prasad et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Prasad, Suhanya V.
Fiedoruk, Krzysztof
Zakrzewska, Magdalena
Savage, Paul B.
Bucki, Robert
Glyoxylate Shunt and Pyruvate-to-Acetoin Shift Are Specific Stress Responses Induced by Colistin and Ceragenin CSA-13 in Enterobacter hormaechei ST89
title Glyoxylate Shunt and Pyruvate-to-Acetoin Shift Are Specific Stress Responses Induced by Colistin and Ceragenin CSA-13 in Enterobacter hormaechei ST89
title_full Glyoxylate Shunt and Pyruvate-to-Acetoin Shift Are Specific Stress Responses Induced by Colistin and Ceragenin CSA-13 in Enterobacter hormaechei ST89
title_fullStr Glyoxylate Shunt and Pyruvate-to-Acetoin Shift Are Specific Stress Responses Induced by Colistin and Ceragenin CSA-13 in Enterobacter hormaechei ST89
title_full_unstemmed Glyoxylate Shunt and Pyruvate-to-Acetoin Shift Are Specific Stress Responses Induced by Colistin and Ceragenin CSA-13 in Enterobacter hormaechei ST89
title_short Glyoxylate Shunt and Pyruvate-to-Acetoin Shift Are Specific Stress Responses Induced by Colistin and Ceragenin CSA-13 in Enterobacter hormaechei ST89
title_sort glyoxylate shunt and pyruvate-to-acetoin shift are specific stress responses induced by colistin and ceragenin csa-13 in enterobacter hormaechei st89
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10434160/
https://www.ncbi.nlm.nih.gov/pubmed/37338344
http://dx.doi.org/10.1128/spectrum.01215-23
work_keys_str_mv AT prasadsuhanyav glyoxylateshuntandpyruvatetoacetoinshiftarespecificstressresponsesinducedbycolistinandceragenincsa13inenterobacterhormaecheist89
AT fiedorukkrzysztof glyoxylateshuntandpyruvatetoacetoinshiftarespecificstressresponsesinducedbycolistinandceragenincsa13inenterobacterhormaecheist89
AT zakrzewskamagdalena glyoxylateshuntandpyruvatetoacetoinshiftarespecificstressresponsesinducedbycolistinandceragenincsa13inenterobacterhormaecheist89
AT savagepaulb glyoxylateshuntandpyruvatetoacetoinshiftarespecificstressresponsesinducedbycolistinandceragenincsa13inenterobacterhormaecheist89
AT buckirobert glyoxylateshuntandpyruvatetoacetoinshiftarespecificstressresponsesinducedbycolistinandceragenincsa13inenterobacterhormaecheist89