Cargando…
SSVEP unsupervised adaptive feature recognition method based on self-similarity of same-frequency signals
INTRODUCTION: As an important human-computer interaction technology, steady-state visual evoked potential (SSVEP) plays a key role in the application of brain computer interface (BCI) systems by accurately decoding SSVEP signals. Currently, the majority SSVEP feature recognition methods use a static...
Autores principales: | Yan, Wenqiang, He, Bo, Zhao, Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10434234/ https://www.ncbi.nlm.nih.gov/pubmed/37600011 http://dx.doi.org/10.3389/fnins.2023.1161511 |
Ejemplares similares
-
A SSVEP Stimuli Encoding Method Using Trinary Frequency-Shift Keying Encoded SSVEP (TFSK-SSVEP)
por: Zhao, Xing, et al.
Publicado: (2017) -
An Adaptive Task-Related Component Analysis Method for SSVEP Recognition
por: Oikonomou, Vangelis P.
Publicado: (2022) -
An Efficient Frequency Recognition Method Based on Likelihood Ratio Test for SSVEP-Based BCI
por: Zhang, Yangsong, et al.
Publicado: (2014) -
GDNet-EEG: An attention-aware deep neural network based on group depth-wise convolution for SSVEP stimulation frequency recognition
por: Wan, Zhijiang, et al.
Publicado: (2023) -
Enhancing Performance of SSVEP-Based Visual Acuity via Spatial Filtering
por: Zheng, Xiaowei, et al.
Publicado: (2021)