Cargando…
Two-dimensional (n = 1) ferroelectric film solar cells
Molecular ferroelectrics that have excellent ferroelectric properties, a low processing temperature, narrow bandgap, and which are lightweight, have shown great potential in the photovoltaic field. However, two-dimensional (2D) perovskite solar cells with high tunability, excellent photo-physical pr...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10434298/ https://www.ncbi.nlm.nih.gov/pubmed/37600562 http://dx.doi.org/10.1093/nsr/nwad061 |
Sumario: | Molecular ferroelectrics that have excellent ferroelectric properties, a low processing temperature, narrow bandgap, and which are lightweight, have shown great potential in the photovoltaic field. However, two-dimensional (2D) perovskite solar cells with high tunability, excellent photo-physical properties and superior long-term stability are limited by poor out-of-plane conductivity from intrinsic multi-quantum-well electronic structures. This work uses 2D molecular ferroelectric film as the absorbing layer to break the limit of multiple quantum wells. Our 2D ferroelectric solar cells achieve the highest open-circuit voltage (1.29 V) and the best efficiency (3.71%) among the 2D (n = 1) Ruddlesden–Popper perovskite solar cells due to the enhanced out-of-plane charge transport induced by molecular ferroelectrics with a strong saturation polarization, high Curie temperature and multiaxial characteristics. This work aims to break the inefficient out-of-plane charge transport caused by the limit of the multi-quantum-well electronic structure and improve the efficiency of 2D ferroelectric solar cells. |
---|