Cargando…
Identification of Pediatric Bacterial Gastroenteritis From Blood Counts and Interviews Based on Machine Learning
Introduction: Differentiating between bacterial and viral gastroenteritis is crucial in pediatric enteritis practice. Our objective was to use machine learning (ML) to identify acute gastroenteritis (AG) caused by bacteria based on blood cell counts and interview findings. Methods: ML was performed...
Autor principal: | Miyagi, Yoshifumi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cureus
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10434729/ https://www.ncbi.nlm.nih.gov/pubmed/37600437 http://dx.doi.org/10.7759/cureus.43644 |
Ejemplares similares
-
Reliability of Capillary Complete Blood Count in Children With Acute Gastroenteritis
por: Wielińska-Wiśniewska, Hanna, et al.
Publicado: (2021) -
Identifying Group A Streptococcal Pharyngitis in Children Through Clinical Variables Using Machine Learning
por: Miyagi, Yoshifumi
Publicado: (2023) -
Identification of Potential Diagnostic Gene Targets for Pediatric Sepsis Based on Bioinformatics and Machine Learning
por: Qiao, Ying, et al.
Publicado: (2021) -
Identification of a pediatric acute hypoxemic respiratory failure signature in peripheral blood leukocytes at 24 hours post-ICU admission with machine learning
por: Grunwell, Jocelyn R., et al.
Publicado: (2023) -
Machine Learning for Mortality Prediction in Pediatric Myocarditis
por: Chou, Fu-Sheng, et al.
Publicado: (2021)