Cargando…

Practical considerations for the analysis of time-resolved x-ray data

The field of time-resolved macromolecular crystallography has been expanding rapidly after free electron lasers for hard x rays (XFELs) became available. Techniques to collect and process data from XFELs spread to synchrotron light sources. Although time-scales and data collection modalities can dif...

Descripción completa

Detalles Bibliográficos
Autor principal: Schmidt, Marius
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Crystallographic Association 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10435274/
https://www.ncbi.nlm.nih.gov/pubmed/37600452
http://dx.doi.org/10.1063/4.0000196
Descripción
Sumario:The field of time-resolved macromolecular crystallography has been expanding rapidly after free electron lasers for hard x rays (XFELs) became available. Techniques to collect and process data from XFELs spread to synchrotron light sources. Although time-scales and data collection modalities can differ substantially between these types of light sources, the analysis of the resulting x-ray data proceeds essentially along the same pathway. At the base of a successful time-resolved experiment is a difference electron density (DED) map that contains chemically meaningful signal. If such a difference map cannot be obtained, the experiment has failed. Here, a practical approach is presented to calculate DED maps and use them to determine structural models.