Cargando…
Optimal Length of Heart Rate Variability Data and Forecasting Time for Ventricular Fibrillation Prediction Using Machine Learning
Ventricular fibrillation (VF) is a cardiovascular disease that is one of the major causes of mortality worldwide, according to the World Health Organization. Heart rate variability (HRV) is a biomarker that is used for detecting and predicting life-threatening arrhythmias. Predicting the occurrence...
Autores principales: | Jeong, Da Un, Taye, Getu Tadele, Hwang, Han-Jeong, Lim, Ki Moo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10435312/ https://www.ncbi.nlm.nih.gov/pubmed/37601811 http://dx.doi.org/10.1155/2021/6663996 |
Ejemplares similares
-
Machine Learning Approach to Predict Ventricular Fibrillation Based on QRS Complex Shape
por: Taye, Getu Tadele, et al.
Publicado: (2019) -
Application of a convolutional neural network for predicting the occurrence of ventricular tachyarrhythmia using heart rate variability features
por: Taye, Getu Tadele, et al.
Publicado: (2020) -
Author Correction: Application of a convolutional neural network for predicting the occurrence of ventricular tachyarrhythmia using heart rate variability features
por: Taye, Getu Tadele, et al.
Publicado: (2020) -
Prediction of Cardiac Mechanical Performance From Electrical Features During Ventricular Tachyarrhythmia Simulation Using Machine Learning Algorithms
por: Jeong, Da Un, et al.
Publicado: (2020) -
Optimal Classification of Atrial Fibrillation and Congestive Heart Failure Using Machine Learning
por: Fuadah, Yunendah Nur, et al.
Publicado: (2022)