Cargando…
Multiset correlation and factor analysis enables exploration of multi-omics data
Multi-omics datasets are becoming more common, necessitating better integration methods to realize their revolutionary potential. Here, we introduce multi-set correlation and factor analysis (MCFA), an unsupervised integration method tailored to the unique challenges of high-dimensional genomics dat...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10435377/ https://www.ncbi.nlm.nih.gov/pubmed/37601969 http://dx.doi.org/10.1016/j.xgen.2023.100359 |
_version_ | 1785092081889312768 |
---|---|
author | Brown, Brielin C. Wang, Collin Kasela, Silva Aguet, François Nachun, Daniel C. Taylor, Kent D. Tracy, Russell P. Durda, Peter Liu, Yongmei Johnson, W. Craig Van Den Berg, David Gupta, Namrata Gabriel, Stacy Smith, Joshua D. Gerzsten, Robert Clish, Clary Wong, Quenna Papanicolau, George Blackwell, Thomas W. Rotter, Jerome I. Rich, Stephen S. Barr, R. Graham Ardlie, Kristin G. Knowles, David A. Lappalainen, Tuuli |
author_facet | Brown, Brielin C. Wang, Collin Kasela, Silva Aguet, François Nachun, Daniel C. Taylor, Kent D. Tracy, Russell P. Durda, Peter Liu, Yongmei Johnson, W. Craig Van Den Berg, David Gupta, Namrata Gabriel, Stacy Smith, Joshua D. Gerzsten, Robert Clish, Clary Wong, Quenna Papanicolau, George Blackwell, Thomas W. Rotter, Jerome I. Rich, Stephen S. Barr, R. Graham Ardlie, Kristin G. Knowles, David A. Lappalainen, Tuuli |
author_sort | Brown, Brielin C. |
collection | PubMed |
description | Multi-omics datasets are becoming more common, necessitating better integration methods to realize their revolutionary potential. Here, we introduce multi-set correlation and factor analysis (MCFA), an unsupervised integration method tailored to the unique challenges of high-dimensional genomics data that enables fast inference of shared and private factors. We used MCFA to integrate methylation markers, protein expression, RNA expression, and metabolite levels in 614 diverse samples from the Trans-Omics for Precision Medicine/Multi-Ethnic Study of Atherosclerosis multi-omics pilot. Samples cluster strongly by ancestry in the shared space, even in the absence of genetic information, while private spaces frequently capture dataset-specific technical variation. Finally, we integrated genetic data by conducting a genome-wide association study (GWAS) of our inferred factors, observing that several factors are enriched for GWAS hits and trans-expression quantitative trait loci. Two of these factors appear to be related to metabolic disease. Our study provides a foundation and framework for further integrative analysis of ever larger multi-modal genomic datasets. |
format | Online Article Text |
id | pubmed-10435377 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-104353772023-08-19 Multiset correlation and factor analysis enables exploration of multi-omics data Brown, Brielin C. Wang, Collin Kasela, Silva Aguet, François Nachun, Daniel C. Taylor, Kent D. Tracy, Russell P. Durda, Peter Liu, Yongmei Johnson, W. Craig Van Den Berg, David Gupta, Namrata Gabriel, Stacy Smith, Joshua D. Gerzsten, Robert Clish, Clary Wong, Quenna Papanicolau, George Blackwell, Thomas W. Rotter, Jerome I. Rich, Stephen S. Barr, R. Graham Ardlie, Kristin G. Knowles, David A. Lappalainen, Tuuli Cell Genom Short Article Multi-omics datasets are becoming more common, necessitating better integration methods to realize their revolutionary potential. Here, we introduce multi-set correlation and factor analysis (MCFA), an unsupervised integration method tailored to the unique challenges of high-dimensional genomics data that enables fast inference of shared and private factors. We used MCFA to integrate methylation markers, protein expression, RNA expression, and metabolite levels in 614 diverse samples from the Trans-Omics for Precision Medicine/Multi-Ethnic Study of Atherosclerosis multi-omics pilot. Samples cluster strongly by ancestry in the shared space, even in the absence of genetic information, while private spaces frequently capture dataset-specific technical variation. Finally, we integrated genetic data by conducting a genome-wide association study (GWAS) of our inferred factors, observing that several factors are enriched for GWAS hits and trans-expression quantitative trait loci. Two of these factors appear to be related to metabolic disease. Our study provides a foundation and framework for further integrative analysis of ever larger multi-modal genomic datasets. Elsevier 2023-07-10 /pmc/articles/PMC10435377/ /pubmed/37601969 http://dx.doi.org/10.1016/j.xgen.2023.100359 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Short Article Brown, Brielin C. Wang, Collin Kasela, Silva Aguet, François Nachun, Daniel C. Taylor, Kent D. Tracy, Russell P. Durda, Peter Liu, Yongmei Johnson, W. Craig Van Den Berg, David Gupta, Namrata Gabriel, Stacy Smith, Joshua D. Gerzsten, Robert Clish, Clary Wong, Quenna Papanicolau, George Blackwell, Thomas W. Rotter, Jerome I. Rich, Stephen S. Barr, R. Graham Ardlie, Kristin G. Knowles, David A. Lappalainen, Tuuli Multiset correlation and factor analysis enables exploration of multi-omics data |
title | Multiset correlation and factor analysis enables exploration of multi-omics data |
title_full | Multiset correlation and factor analysis enables exploration of multi-omics data |
title_fullStr | Multiset correlation and factor analysis enables exploration of multi-omics data |
title_full_unstemmed | Multiset correlation and factor analysis enables exploration of multi-omics data |
title_short | Multiset correlation and factor analysis enables exploration of multi-omics data |
title_sort | multiset correlation and factor analysis enables exploration of multi-omics data |
topic | Short Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10435377/ https://www.ncbi.nlm.nih.gov/pubmed/37601969 http://dx.doi.org/10.1016/j.xgen.2023.100359 |
work_keys_str_mv | AT brownbrielinc multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata AT wangcollin multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata AT kaselasilva multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata AT aguetfrancois multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata AT nachundanielc multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata AT taylorkentd multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata AT tracyrussellp multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata AT durdapeter multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata AT liuyongmei multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata AT johnsonwcraig multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata AT vandenbergdavid multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata AT guptanamrata multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata AT gabrielstacy multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata AT smithjoshuad multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata AT gerzstenrobert multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata AT clishclary multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata AT wongquenna multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata AT papanicolaugeorge multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata AT blackwellthomasw multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata AT rotterjeromei multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata AT richstephens multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata AT barrrgraham multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata AT ardliekristing multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata AT knowlesdavida multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata AT lappalainentuuli multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata |