Cargando…

Multiset correlation and factor analysis enables exploration of multi-omics data

Multi-omics datasets are becoming more common, necessitating better integration methods to realize their revolutionary potential. Here, we introduce multi-set correlation and factor analysis (MCFA), an unsupervised integration method tailored to the unique challenges of high-dimensional genomics dat...

Descripción completa

Detalles Bibliográficos
Autores principales: Brown, Brielin C., Wang, Collin, Kasela, Silva, Aguet, François, Nachun, Daniel C., Taylor, Kent D., Tracy, Russell P., Durda, Peter, Liu, Yongmei, Johnson, W. Craig, Van Den Berg, David, Gupta, Namrata, Gabriel, Stacy, Smith, Joshua D., Gerzsten, Robert, Clish, Clary, Wong, Quenna, Papanicolau, George, Blackwell, Thomas W., Rotter, Jerome I., Rich, Stephen S., Barr, R. Graham, Ardlie, Kristin G., Knowles, David A., Lappalainen, Tuuli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10435377/
https://www.ncbi.nlm.nih.gov/pubmed/37601969
http://dx.doi.org/10.1016/j.xgen.2023.100359
_version_ 1785092081889312768
author Brown, Brielin C.
Wang, Collin
Kasela, Silva
Aguet, François
Nachun, Daniel C.
Taylor, Kent D.
Tracy, Russell P.
Durda, Peter
Liu, Yongmei
Johnson, W. Craig
Van Den Berg, David
Gupta, Namrata
Gabriel, Stacy
Smith, Joshua D.
Gerzsten, Robert
Clish, Clary
Wong, Quenna
Papanicolau, George
Blackwell, Thomas W.
Rotter, Jerome I.
Rich, Stephen S.
Barr, R. Graham
Ardlie, Kristin G.
Knowles, David A.
Lappalainen, Tuuli
author_facet Brown, Brielin C.
Wang, Collin
Kasela, Silva
Aguet, François
Nachun, Daniel C.
Taylor, Kent D.
Tracy, Russell P.
Durda, Peter
Liu, Yongmei
Johnson, W. Craig
Van Den Berg, David
Gupta, Namrata
Gabriel, Stacy
Smith, Joshua D.
Gerzsten, Robert
Clish, Clary
Wong, Quenna
Papanicolau, George
Blackwell, Thomas W.
Rotter, Jerome I.
Rich, Stephen S.
Barr, R. Graham
Ardlie, Kristin G.
Knowles, David A.
Lappalainen, Tuuli
author_sort Brown, Brielin C.
collection PubMed
description Multi-omics datasets are becoming more common, necessitating better integration methods to realize their revolutionary potential. Here, we introduce multi-set correlation and factor analysis (MCFA), an unsupervised integration method tailored to the unique challenges of high-dimensional genomics data that enables fast inference of shared and private factors. We used MCFA to integrate methylation markers, protein expression, RNA expression, and metabolite levels in 614 diverse samples from the Trans-Omics for Precision Medicine/Multi-Ethnic Study of Atherosclerosis multi-omics pilot. Samples cluster strongly by ancestry in the shared space, even in the absence of genetic information, while private spaces frequently capture dataset-specific technical variation. Finally, we integrated genetic data by conducting a genome-wide association study (GWAS) of our inferred factors, observing that several factors are enriched for GWAS hits and trans-expression quantitative trait loci. Two of these factors appear to be related to metabolic disease. Our study provides a foundation and framework for further integrative analysis of ever larger multi-modal genomic datasets.
format Online
Article
Text
id pubmed-10435377
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-104353772023-08-19 Multiset correlation and factor analysis enables exploration of multi-omics data Brown, Brielin C. Wang, Collin Kasela, Silva Aguet, François Nachun, Daniel C. Taylor, Kent D. Tracy, Russell P. Durda, Peter Liu, Yongmei Johnson, W. Craig Van Den Berg, David Gupta, Namrata Gabriel, Stacy Smith, Joshua D. Gerzsten, Robert Clish, Clary Wong, Quenna Papanicolau, George Blackwell, Thomas W. Rotter, Jerome I. Rich, Stephen S. Barr, R. Graham Ardlie, Kristin G. Knowles, David A. Lappalainen, Tuuli Cell Genom Short Article Multi-omics datasets are becoming more common, necessitating better integration methods to realize their revolutionary potential. Here, we introduce multi-set correlation and factor analysis (MCFA), an unsupervised integration method tailored to the unique challenges of high-dimensional genomics data that enables fast inference of shared and private factors. We used MCFA to integrate methylation markers, protein expression, RNA expression, and metabolite levels in 614 diverse samples from the Trans-Omics for Precision Medicine/Multi-Ethnic Study of Atherosclerosis multi-omics pilot. Samples cluster strongly by ancestry in the shared space, even in the absence of genetic information, while private spaces frequently capture dataset-specific technical variation. Finally, we integrated genetic data by conducting a genome-wide association study (GWAS) of our inferred factors, observing that several factors are enriched for GWAS hits and trans-expression quantitative trait loci. Two of these factors appear to be related to metabolic disease. Our study provides a foundation and framework for further integrative analysis of ever larger multi-modal genomic datasets. Elsevier 2023-07-10 /pmc/articles/PMC10435377/ /pubmed/37601969 http://dx.doi.org/10.1016/j.xgen.2023.100359 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Short Article
Brown, Brielin C.
Wang, Collin
Kasela, Silva
Aguet, François
Nachun, Daniel C.
Taylor, Kent D.
Tracy, Russell P.
Durda, Peter
Liu, Yongmei
Johnson, W. Craig
Van Den Berg, David
Gupta, Namrata
Gabriel, Stacy
Smith, Joshua D.
Gerzsten, Robert
Clish, Clary
Wong, Quenna
Papanicolau, George
Blackwell, Thomas W.
Rotter, Jerome I.
Rich, Stephen S.
Barr, R. Graham
Ardlie, Kristin G.
Knowles, David A.
Lappalainen, Tuuli
Multiset correlation and factor analysis enables exploration of multi-omics data
title Multiset correlation and factor analysis enables exploration of multi-omics data
title_full Multiset correlation and factor analysis enables exploration of multi-omics data
title_fullStr Multiset correlation and factor analysis enables exploration of multi-omics data
title_full_unstemmed Multiset correlation and factor analysis enables exploration of multi-omics data
title_short Multiset correlation and factor analysis enables exploration of multi-omics data
title_sort multiset correlation and factor analysis enables exploration of multi-omics data
topic Short Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10435377/
https://www.ncbi.nlm.nih.gov/pubmed/37601969
http://dx.doi.org/10.1016/j.xgen.2023.100359
work_keys_str_mv AT brownbrielinc multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata
AT wangcollin multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata
AT kaselasilva multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata
AT aguetfrancois multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata
AT nachundanielc multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata
AT taylorkentd multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata
AT tracyrussellp multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata
AT durdapeter multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata
AT liuyongmei multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata
AT johnsonwcraig multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata
AT vandenbergdavid multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata
AT guptanamrata multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata
AT gabrielstacy multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata
AT smithjoshuad multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata
AT gerzstenrobert multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata
AT clishclary multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata
AT wongquenna multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata
AT papanicolaugeorge multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata
AT blackwellthomasw multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata
AT rotterjeromei multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata
AT richstephens multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata
AT barrrgraham multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata
AT ardliekristing multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata
AT knowlesdavida multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata
AT lappalainentuuli multisetcorrelationandfactoranalysisenablesexplorationofmultiomicsdata