Cargando…
Nucleus accumbens core acetylcholine receptors modulate the balance of flexible and inflexible cue-directed motivation
Sign-tracking is a conditioned response where animals interact with reward-predictive cues due to the cues having motivational value, or incentive salience. The nucleus accumbens core (NAc) has been implicated in mediating the sign-tracking response. Additionally, acetylcholine (ACh) transmission th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10435540/ https://www.ncbi.nlm.nih.gov/pubmed/37591961 http://dx.doi.org/10.1038/s41598-023-40439-4 |
Sumario: | Sign-tracking is a conditioned response where animals interact with reward-predictive cues due to the cues having motivational value, or incentive salience. The nucleus accumbens core (NAc) has been implicated in mediating the sign-tracking response. Additionally, acetylcholine (ACh) transmission throughout the striatum has been attributed to both incentive motivation and behavioral flexibility. Here, we demonstrate a role for NAc ACh receptors in the flexibility of sign-tracking. Sign-tracking animals were exposed to an omission contingency, in which vigorous sign-tracking was punished by reward omission. Animals rapidly adjusted their behavior, but they maintained sign-tracking in a less vigorous manner that did not cancel reward. Within this context of sign-tracking being persistent yet flexible in structure, blockade of NAc nicotinic receptors (nAChRs) led to a persistence in the initial sign-tracking response during omission followed by a period of change in the makeup of sign-tracking, whereas blockade of muscarinic receptors (mAChRs) oppositely enhanced the omission-related development of the new sign-tracking behaviors. Later, once omission learning had occurred, nAChR blockade uniquely led to reduced sign-tracking and elevated reward-directed behaviors instead. These results indicate that NAc ACh receptors have opposing roles in maintaining learned patterns of sign-tracking, with nAChRs having a special involvement in regulating the structure of the sign-tracking response. |
---|