Cargando…
Aphid cluster recognition and detection in the wild using deep learning models
Aphid infestation poses a significant threat to crop production, rural communities, and global food security. While chemical pest control is crucial for maximizing yields, applying chemicals across entire fields is both environmentally unsustainable and costly. Hence, precise localization and manage...
Autores principales: | Zhang, Tianxiao, Li, Kaidong, Chen, Xiangyu, Zhong, Cuncong, Luo, Bo, Grijalva, Ivan, McCornack, Brian, Flippo, Daniel, Sharda, Ajay, Wang, Guanghui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10435548/ https://www.ncbi.nlm.nih.gov/pubmed/37591898 http://dx.doi.org/10.1038/s41598-023-38633-5 |
Ejemplares similares
-
Design of a Reconfigurable Crop Scouting Vehicle for Row Crop Navigation: A Proof-of-Concept Study
por: Schmitz, Austin, et al.
Publicado: (2022) -
Detecting common coccinellids found in sorghum using deep learning models
por: Wang, Chaoxin, et al.
Publicado: (2023) -
Within-Plant Bottom-Up Effects Mediate Non-Consumptive Impacts of Top-Down Control of Soybean Aphids
por: Costamagna, Alejandro C., et al.
Publicado: (2013) -
Colonoscopy polyp detection and classification: Dataset creation and comparative evaluations
por: Li, Kaidong, et al.
Publicado: (2021) -
Assessing the potential for deep learning and computer vision to identify bumble bee species from images
por: Spiesman, Brian J., et al.
Publicado: (2021)