Cargando…
Unsupervised machine learning algorithms identify expected haemorrhage relationships but define unexplained coagulation profiles mapping to thrombotic phenotypes in hereditary haemorrhagic telangiectasia
Hereditary haemorrhagic telangiectasia (HHT) can result in challenging anaemia and thrombosis phenotypes. Clinical presentations of HHT vary for relatives with identical casual mutations, suggesting other factors may modify severity. To examine objectively, we developed unsupervised machine learning...
Autores principales: | Mukhtar, Ghazel, Shovlin, Claire L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10435691/ https://www.ncbi.nlm.nih.gov/pubmed/37601877 http://dx.doi.org/10.1002/jha2.746 |
Ejemplares similares
-
Acute kidney injury in Jamaicans with sickle cell disease hospitalized with COVID‐19 infection
por: Fisher, Lori‐Ann, et al.
Publicado: (2023) -
A phase III, randomised, double‐blind, multi‐national clinical trial comparing SB12 (proposed eculizumab biosimilar) and reference eculizumab in patients with paroxysmal nocturnal haemoglobinuria
por: Jang, Jun Ho, et al.
Publicado: (2022) -
Impact of age‐dependent red blood cell parameters on α‐globin gene genotyping in children
por: Nissen, Peter H., et al.
Publicado: (2022) -
Procoagulant factors and future risk of arterial cardiovascular disease in patients with prior venous thrombosis: A cohort study
por: Yap, Eng Soo, et al.
Publicado: (2023) -
UK media reporting of NICE recommendation of crizanlizumab for patients with sickle cell disease
por: Buka, Richard J, et al.
Publicado: (2022)