Cargando…
Identifying cancer-associated leukocyte profiles using high-resolution flow cytometry screening and machine learning
BACKGROUND: Machine learning (ML) is a valuable tool with the potential to aid clinical decision making. Adoption of ML to this end requires data that reliably correlates with the clinical outcome of interest; the advantage of ML is that it can model these correlations from complex multiparameter da...
Autores principales: | Simon Davis, David A., Ritchie, Melissa, Hammill, Dillon, Garrett, Jessica, Slater, Robert O., Otoo, Naomi, Orlov, Anna, Gosling, Katharine, Price, Jason, Yip, Desmond, Jung, Kylie, Syed, Farhan M., Atmosukarto, Ines I., Quah, Ben J. C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10435879/ https://www.ncbi.nlm.nih.gov/pubmed/37600768 http://dx.doi.org/10.3389/fimmu.2023.1211064 |
Ejemplares similares
-
Machine learning predicts cancer subtypes and progression from blood immune signatures
por: Simon Davis, David A., et al.
Publicado: (2022) -
Irradiation immunity interactions
por: Simon Davis, David A, et al.
Publicado: (2022) -
Imaging Cytometry of Human Leukocytes with Third Harmonic Generation Microscopy
por: Wu, Cheng-Ham, et al.
Publicado: (2016) -
Isolation of human intrahepatic leukocytes for phenotypic and functional characterization by flow cytometry
por: Kucykowicz, Stephanie, et al.
Publicado: (2022) -
Is flow cytometry better in counting malaria pigment-containing leukocytes compared to microscopy?
por: Hänscheid, Thomas, et al.
Publicado: (2009)