Cargando…
Explainable SHAP-XGBoost models for in-hospital mortality after myocardial infarction
BACKGROUND: A lack of explainability in published machine learning (ML) models limits clinicians’ understanding of how predictions are made, in turn undermining uptake of the models into clinical practice. OBJECTIVE: The purpose of this study was to develop explainable ML models to predict in-hospit...
Autores principales: | Tarabanis, Constantine, Kalampokis, Evangelos, Khalil, Mahmoud, Alviar, Carlos L., Chinitz, Larry A., Jankelson, Lior |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10435947/ https://www.ncbi.nlm.nih.gov/pubmed/37600443 http://dx.doi.org/10.1016/j.cvdhj.2023.06.001 |
Ejemplares similares
-
XGBoost-SHAP-based interpretable diagnostic framework for alzheimer’s disease
por: Yi, Fuliang, et al.
Publicado: (2023) -
Detection of the chronic kidney disease using XGBoost classifier and explaining the influence of the attributes on the model using SHAP
por: Raihan, Md. Johir, et al.
Publicado: (2023) -
Interpretable predictive model for shield attitude control performance based on XGboost and SHAP
por: Hu, Min, et al.
Publicado: (2022) -
Potential of Coupling Metaheuristics-Optimized-XGBoost and SHAP in Revealing PAHs Environmental Fate
por: Jovanovic, Gordana, et al.
Publicado: (2023) -
Explainable Artificial Intelligence for Prediction of Complete Surgical Cytoreduction in Advanced-Stage Epithelial Ovarian Cancer
por: Laios, Alexandros, et al.
Publicado: (2022)