Cargando…
Machine learning models in predicting health care costs in patients with a recent acute coronary syndrome: A prospective pilot study
BACKGROUND: Health care budgets are limited, requiring the optimal use of resources. Machine learning (ML) methods may have an enormous potential for effective use of health care resources. OBJECTIVE: We assessed the applicability of selected ML tools to evaluate the contribution of known risk marke...
Autores principales: | Hautala, Arto J., Shavazipour, Babooshka, Afsar, Bekir, Tulppo, Mikko P., Miettinen, Kaisa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10435951/ https://www.ncbi.nlm.nih.gov/pubmed/37600445 http://dx.doi.org/10.1016/j.cvdhj.2023.05.001 |
Ejemplares similares
-
Interactive multiobjective optimization for finding the most preferred exercise therapy modality in knee osteoarthritis
por: Shavazipour, Babooshka, et al.
Publicado: (2022) -
Effects of a Two-Year Home-Based Exercise Training Program on Oxidized LDL and HDL Lipids in Coronary Artery Disease Patients with and without Type-2 Diabetes
por: Tiainen, Sanna, et al.
Publicado: (2018) -
Self-Rated Mental Stress and Exercise Training Response in Healthy Subjects
por: Ruuska, Piritta S., et al.
Publicado: (2012) -
Peak exercise capacity prediction from a submaximal exercise test in coronary artery disease patients
por: Hautala, Arto J., et al.
Publicado: (2013) -
Acute post-exercise change in blood pressure and exercise training response in patients with coronary artery disease
por: Kiviniemi, Antti M., et al.
Publicado: (2015)