Cargando…
Paired evaluation of machine-learning models characterizes effects of confounders and outliers
The true accuracy of a machine-learning model is a population-level statistic that cannot be observed directly. In practice, predictor performance is estimated against one or more test datasets, and the accuracy of this estimate strongly depends on how well the test sets represent all possible unsee...
Autores principales: | Nariya, Maulik K., Mills, Caitlin E., Sorger, Peter K., Sokolov, Artem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10435952/ https://www.ncbi.nlm.nih.gov/pubmed/37602225 http://dx.doi.org/10.1016/j.patter.2023.100791 |
Ejemplares similares
-
Paired evaluation of machine-learning models characterizes effects of confounders and outliers
por: Nariya, Maulik K., et al.
Publicado: (2023) -
Comorbidities confounding the outcomes of surgery for third window syndrome: Outlier analysis
por: Wackym, P. Ashley, et al.
Publicado: (2017) -
Confound-leakage: confound removal in machine learning leads to leakage
por: Hamdan, Sami, et al.
Publicado: (2023) -
Machine Learning Based Outlier Detectionfor Data Certification
por: Payoungkhamdee, Patomporn
Publicado: (2019) -
Statistical quantification of confounding bias in machine learning models
por: Spisak, Tamas
Publicado: (2022)