Cargando…
Transcriptomic forecasting with neural ordinary differential equations
Single-cell transcriptomics technologies can uncover changes in the molecular states that underlie cellular phenotypes. However, understanding the dynamic cellular processes requires extending from inferring trajectories from snapshots of cellular states to estimating temporal changes in cellular ge...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10435954/ https://www.ncbi.nlm.nih.gov/pubmed/37602211 http://dx.doi.org/10.1016/j.patter.2023.100793 |
_version_ | 1785092220472262656 |
---|---|
author | Erbe, Rossin Stein-O’Brien, Genevieve Fertig, Elana J. |
author_facet | Erbe, Rossin Stein-O’Brien, Genevieve Fertig, Elana J. |
author_sort | Erbe, Rossin |
collection | PubMed |
description | Single-cell transcriptomics technologies can uncover changes in the molecular states that underlie cellular phenotypes. However, understanding the dynamic cellular processes requires extending from inferring trajectories from snapshots of cellular states to estimating temporal changes in cellular gene expression. To address this challenge, we have developed a neural ordinary differential-equation-based method, RNAForecaster, for predicting gene expression states in single cells for multiple future time steps in an embedding-independent manner. We demonstrate that RNAForecaster can accurately predict future expression states in simulated single-cell transcriptomic data with cellular tracking over time. We then show that by using metabolic labeling single-cell RNA sequencing (scRNA-seq) data from constitutively dividing cells, RNAForecaster accurately recapitulates many of the expected changes in gene expression during progression through the cell cycle over a 3-day period. Thus, RNAForecaster enables short-term estimation of future expression states in biological systems from high-throughput datasets with temporal information. |
format | Online Article Text |
id | pubmed-10435954 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-104359542023-08-19 Transcriptomic forecasting with neural ordinary differential equations Erbe, Rossin Stein-O’Brien, Genevieve Fertig, Elana J. Patterns (N Y) Article Single-cell transcriptomics technologies can uncover changes in the molecular states that underlie cellular phenotypes. However, understanding the dynamic cellular processes requires extending from inferring trajectories from snapshots of cellular states to estimating temporal changes in cellular gene expression. To address this challenge, we have developed a neural ordinary differential-equation-based method, RNAForecaster, for predicting gene expression states in single cells for multiple future time steps in an embedding-independent manner. We demonstrate that RNAForecaster can accurately predict future expression states in simulated single-cell transcriptomic data with cellular tracking over time. We then show that by using metabolic labeling single-cell RNA sequencing (scRNA-seq) data from constitutively dividing cells, RNAForecaster accurately recapitulates many of the expected changes in gene expression during progression through the cell cycle over a 3-day period. Thus, RNAForecaster enables short-term estimation of future expression states in biological systems from high-throughput datasets with temporal information. Elsevier 2023-07-06 /pmc/articles/PMC10435954/ /pubmed/37602211 http://dx.doi.org/10.1016/j.patter.2023.100793 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Erbe, Rossin Stein-O’Brien, Genevieve Fertig, Elana J. Transcriptomic forecasting with neural ordinary differential equations |
title | Transcriptomic forecasting with neural ordinary differential equations |
title_full | Transcriptomic forecasting with neural ordinary differential equations |
title_fullStr | Transcriptomic forecasting with neural ordinary differential equations |
title_full_unstemmed | Transcriptomic forecasting with neural ordinary differential equations |
title_short | Transcriptomic forecasting with neural ordinary differential equations |
title_sort | transcriptomic forecasting with neural ordinary differential equations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10435954/ https://www.ncbi.nlm.nih.gov/pubmed/37602211 http://dx.doi.org/10.1016/j.patter.2023.100793 |
work_keys_str_mv | AT erberossin transcriptomicforecastingwithneuralordinarydifferentialequations AT steinobriengenevieve transcriptomicforecastingwithneuralordinarydifferentialequations AT fertigelanaj transcriptomicforecastingwithneuralordinarydifferentialequations |