Cargando…
Transcriptomic forecasting with neural ordinary differential equations
Single-cell transcriptomics technologies can uncover changes in the molecular states that underlie cellular phenotypes. However, understanding the dynamic cellular processes requires extending from inferring trajectories from snapshots of cellular states to estimating temporal changes in cellular ge...
Autores principales: | Erbe, Rossin, Stein-O’Brien, Genevieve, Fertig, Elana J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10435954/ https://www.ncbi.nlm.nih.gov/pubmed/37602211 http://dx.doi.org/10.1016/j.patter.2023.100793 |
Ejemplares similares
-
Forecasting the outcome of spintronic experiments with Neural Ordinary Differential Equations
por: Chen, Xing, et al.
Publicado: (2022) -
Forecasting virus outbreaks with social media data via neural ordinary differential equations
por: Núñez, Matías, et al.
Publicado: (2023) -
Ordinary differential equations
por: Pontryagin, Lev Semenovich, et al.
Publicado: (1962) -
Ordinary differential equations: introduction to the theory of ordinary differential equations in the real domain
por: Kurzweil, J
Publicado: (1986) -
Ordinary differential equations
por: Hartman, Philip, 1915-
Publicado: (1964)