Cargando…
Understanding the host-pathogen evolutionary balance through Gaussian process modeling of SARS-CoV-2
We have developed a machine learning (ML) approach using Gaussian process (GP)-based spatial covariance (SCV) to track the impact of spatial-temporal mutational events driving host-pathogen balance in biology. We show how SCV can be applied to understanding the response of evolving covariant relatio...
Autores principales: | Loguercio, Salvatore, Calverley, Ben C., Wang, Chao, Shak, Daniel, Zhao, Pei, Sun, Shuhong, Budinger, G.R. Scott, Balch, William E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10436005/ https://www.ncbi.nlm.nih.gov/pubmed/37602209 http://dx.doi.org/10.1016/j.patter.2023.100800 |
Ejemplares similares
-
Quantitating the epigenetic transformation contributing to cholesterol homeostasis using Gaussian process
por: Wang, Chao, et al.
Publicado: (2019) -
Emerging pathogen evolution: Using evolutionary theory to understand the fate of novel infectious pathogens
por: Bonneaud, Camille, et al.
Publicado: (2020) -
Understanding the Evolutionary Ecology of host–pathogen Interactions Provides Insights into the Outcomes of Insect Pest Biocontrol
por: Páez, David J., et al.
Publicado: (2020) -
Distribution Optimization: An evolutionary algorithm to separate Gaussian mixtures
por: Lerch, Florian, et al.
Publicado: (2020) -
Automatic generation of evolutionary hypotheses using mixed Gaussian phylogenetic models
por: Mitov, Venelin, et al.
Publicado: (2019)