Cargando…
Paired evaluation of machine-learning models characterizes effects of confounders and outliers
Autores principales: | Nariya, Maulik K., Mills, Caitlin E., Sorger, Peter K., Sokolov, Artem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10436033/ https://www.ncbi.nlm.nih.gov/pubmed/37602216 http://dx.doi.org/10.1016/j.patter.2023.100824 |
Ejemplares similares
-
Paired evaluation of machine-learning models characterizes effects of confounders and outliers
por: Nariya, Maulik K., et al.
Publicado: (2023) -
Comorbidities confounding the outcomes of surgery for third window syndrome: Outlier analysis
por: Wackym, P. Ashley, et al.
Publicado: (2017) -
Confound-leakage: confound removal in machine learning leads to leakage
por: Hamdan, Sami, et al.
Publicado: (2023) -
Machine Learning Based Outlier Detectionfor Data Certification
por: Payoungkhamdee, Patomporn
Publicado: (2019) -
Correction to: Improved accuracy and fewer outliers with a novel CT-free robotic THA system in matched-pair analysis with manual THA
por: Kamath, Atul F., et al.
Publicado: (2021)