Cargando…
Generative modeling of single-cell gene expression for dose-dependent chemical perturbations
Single-cell sequencing reveals the heterogeneity of cellular response to chemical perturbations. However, testing all relevant combinations of cell types, chemicals, and doses is a daunting task. A deep generative learning formalism called variational autoencoders (VAEs) has been effective in predic...
Autores principales: | Kana, Omar, Nault, Rance, Filipovic, David, Marri, Daniel, Zacharewski, Tim, Bhattacharya, Sudin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10436058/ https://www.ncbi.nlm.nih.gov/pubmed/37602218 http://dx.doi.org/10.1016/j.patter.2023.100817 |
Ejemplares similares
-
Benchmarking of a Bayesian single cell RNAseq differential gene expression test for dose–response study designs
por: Nault, Rance, et al.
Publicado: (2022) -
Single-Nuclei RNA Sequencing Assessment of the Hepatic Effects of 2,3,7,8-Tetrachlorodibenzo-p-dioxin
por: Nault, Rance, et al.
Publicado: (2020) -
RNA-Seq versus oligonucleotide array assessment of dose-dependent TCDD-elicited hepatic gene expression in mice
por: Nault, Rance, et al.
Publicado: (2015) -
Prediction of mammalian tissue-specific CLOCK–BMAL1 binding to E-box DNA motifs
por: Marri, Daniel, et al.
Publicado: (2023) -
Loss of liver-specific and sexually dimorphic gene expression by aryl hydrocarbon receptor activation in C57BL/6 mice
por: Nault, Rance, et al.
Publicado: (2017)