Cargando…
Machine learning-based on cytotoxic T lymphocyte evasion gene develops a novel signature to predict prognosis and immunotherapy responses for kidney renal clear cell carcinoma patients
BACKGROUND: Immunotherapy resistance has become a difficult point in treating kidney renal clear cell carcinoma (KIRC) patients, mainly because of immune evasion. Currently, there is no effective signature to predict immunotherapy. Therefore, we use machine learning algorithms to construct a signatu...
Autores principales: | Chen, Mei, Nie, Zhenyu, Huang, Denggao, Gao, Yuanhui, Cao, Hui, Zheng, Linlin, Zhang, Shufang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10436106/ https://www.ncbi.nlm.nih.gov/pubmed/37600786 http://dx.doi.org/10.3389/fimmu.2023.1192428 |
Ejemplares similares
-
Development of a polyamine gene expression score for predicting prognosis and treatment response in clear cell renal cell carcinoma
por: Chen, Mei, et al.
Publicado: (2022) -
Identification of an Autophagy-Related Prognostic Signature for Clear Cell Renal Cell Carcinoma
por: Chen, Mei, et al.
Publicado: (2020) -
m7G regulator-mediated molecular subtypes and tumor microenvironment in kidney renal clear cell carcinoma
por: Chen, Mei, et al.
Publicado: (2022) -
RNA-Binding Proteins in Bladder Cancer
por: Gao, Yuanhui, et al.
Publicado: (2023) -
A New Ferroptosis-Related lncRNA Signature Predicts the Prognosis of Bladder Cancer Patients
por: Chen, Mei, et al.
Publicado: (2021)