Cargando…
Implementation frameworks for end-to-end clinical AI: derivation of the SALIENT framework
OBJECTIVE: To derive a comprehensive implementation framework for clinical AI models within hospitals informed by existing AI frameworks and integrated with reporting standards for clinical AI research. MATERIALS AND METHODS: (1) Derive a provisional implementation framework based on the taxonomy of...
Autores principales: | van der Vegt, Anton H, Scott, Ian A, Dermawan, Krishna, Schnetler, Rudolf J, Kalke, Vikrant R, Lane, Paul J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10436156/ https://www.ncbi.nlm.nih.gov/pubmed/37208863 http://dx.doi.org/10.1093/jamia/ocad088 |
Ejemplares similares
-
Deployment of machine learning algorithms to predict sepsis: systematic review and application of the SALIENT clinical AI implementation framework
por: van der Vegt, Anton H, et al.
Publicado: (2023) -
ACR’s Connect and AI-LAB technical framework
por: Brink, Laura, et al.
Publicado: (2022) -
gExcite: a start-to-end framework for single-cell gene expression, hashing, and antibody analysis
por: Grob, Linda, et al.
Publicado: (2023) -
An objective framework for evaluating unrecognized bias in medical AI models predicting COVID-19 outcomes
por: Estiri, Hossein, et al.
Publicado: (2022) -
How to implement new diagnostic products in low-resource settings: an end-to-end framework
por: Mugambi, Melissa Latigo, et al.
Publicado: (2018)