Cargando…
Omics data integration in computational biology viewed through the prism of machine learning paradigms
Important quantities of biological data can today be acquired to characterize cell types and states, from various sources and using a wide diversity of methods, providing scientists with more and more information to answer challenging biological questions. Unfortunately, working with this amount of...
Autores principales: | Fouché, Aziz, Zinovyev, Andrei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10436311/ https://www.ncbi.nlm.nih.gov/pubmed/37600970 http://dx.doi.org/10.3389/fbinf.2023.1191961 |
Ejemplares similares
-
Exploring the classification of cancer cell lines from multiple omic views
por: Yang, Xiaoxi, et al.
Publicado: (2020) -
Transmorph: a unifying computational framework for modular single-cell RNA-seq data integration
por: Fouché, Aziz, et al.
Publicado: (2023) -
Machine Learning for Causal Inference in Biological Networks: Perspectives of This Challenge
por: Lecca, Paola
Publicado: (2021) -
Corrigendum: Machine Learning for Causal Inference in Biological Networks: Perspectives of This Challenge
por: Lecca, Paola
Publicado: (2022) -
Integration of multi-omics technologies for crop improvement: Status and prospects
por: Zhang, Ru, et al.
Publicado: (2022)