Cargando…
Targeting FSCN1 with an oral small-molecule inhibitor for treating ocular neovascularization
BACKGROUND: Ocular neovascularization is a leading cause of blindness and visual impairment. While intravitreal anti-VEGF agents can be effective, they do have several drawbacks, such as endophthalmitis and drug resistance. Additional studies are necessary to explore alternative therapeutic targets....
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10436462/ https://www.ncbi.nlm.nih.gov/pubmed/37596693 http://dx.doi.org/10.1186/s12967-023-04225-0 |
Sumario: | BACKGROUND: Ocular neovascularization is a leading cause of blindness and visual impairment. While intravitreal anti-VEGF agents can be effective, they do have several drawbacks, such as endophthalmitis and drug resistance. Additional studies are necessary to explore alternative therapeutic targets. METHODS: Bioinformatics analysis and quantitative RT-PCR were used to detect and verify the FSCN1 expression levels in oxygen-induced retinopathy (OIR) and laser-induced choroidal neovascularization (CNV) mice model. Transwell, wound scratching, tube formation, three-dimensional bead sprouting assay, rhodamine-phalloidin staining, Isolectin B4 staining and immunofluorescent staining were conducted to detect the role of FSCN1 and its oral inhibitor NP-G2-044 in vivo and vitro. HPLC–MS/MS analysis, cell apoptosis assay, MTT assay, H&E and tunnel staining, visual electrophysiology testing, visual cliff test and light/dark transition test were conducted to assess the pharmacokinetic and security of NP-G2-044 in vivo and vitro. Co-Immunoprecipitation, qRT-PCR and western blot were conducted to reveal the mechanism of FSCN1 and NP-G2-044 mediated pathological ocular neovascularization. RESULTS: We discovered that Fascin homologue 1 (FSCN1) is vital for angiogenesis both in vitro and in vivo, and that it is highly expressed in oxygen-induced retinopathy (OIR) and laser-induced choroidal neovascularization (CNV). We found that NP-G2-044, a small-molecule inhibitor of FSCN1 with oral activity, can impede the sprouting, migration, and filopodia formation of cultured endothelial cells. Oral NP-G2-044 can effectively and safely curb the development of OIR and CNV, and increase efficacy while overcoming anti-VEGF resistance in combination with intravitreal aflibercept (Eylea) injection. CONCLUSION: Collectively, FSCN1 inhibition could serve as a promising therapeutic approach to block ocular neovascularization. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12967-023-04225-0. |
---|