Cargando…
Machine learning-driven exploration of drug therapies for triple-negative breast cancer treatment
Breast cancer is the second leading cause of cancer death in women among all cancer types. It is highly heterogeneous in nature, which means that the tumors have different morphologies and there is heterogeneity even among people who have the same type of tumor. Several staging and classifying syste...
Autores principales: | Kaushik, Aman Chandra, Zhao, Zhongming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10436744/ https://www.ncbi.nlm.nih.gov/pubmed/37602329 http://dx.doi.org/10.3389/fmolb.2023.1215204 |
Ejemplares similares
-
Targeting Triple Negative Breast Cancer With Oncolytic Adenoviruses
por: Green-Tripp, Gabriela, et al.
Publicado: (2022) -
The application of exosomes in the treatment of triple-negative breast cancer
por: Weaver, John W., et al.
Publicado: (2022) -
Editorial: Leveraging machine learning for omics-driven biomarker discovery
por: Li, Sheng, et al.
Publicado: (2023) -
Establishment of a Cell Necroptosis Index to Predict Prognosis and Drug Sensitivity for Patients With Triple-Negative Breast Cancer
por: Xie, Jindong, et al.
Publicado: (2022) -
Gene expression profile analysis to discover molecular signatures for early diagnosis and therapies of triple-negative breast cancer
por: Alam, Md Shahin, et al.
Publicado: (2022)