Cargando…
A deep learning approach for automatic tumor delineation in stereotactic radiotherapy for non-small cell lung cancer using diagnostic PET-CT and planning CT
INTRODUCTION: Accurate delineation of tumor targets is crucial for stereotactic body radiation therapy (SBRT) for non-small cell lung cancer (NSCLC). This study aims to develop a deep learning-based segmentation approach to accurately and efficiently delineate NSCLC targets using diagnostic PET-CT a...
Autores principales: | Yu, Xuyao, He, Lian, Wang, Yuwen, Dong, Yang, Song, Yongchun, Yuan, Zhiyong, Yan, Ziye, Wang, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10437048/ https://www.ncbi.nlm.nih.gov/pubmed/37601687 http://dx.doi.org/10.3389/fonc.2023.1235461 |
Ejemplares similares
-
Geometric and Dosimetric Evaluation of Deep Learning-Based Automatic Delineation on CBCT-Synthesized CT and Planning CT for Breast Cancer Adaptive Radiotherapy: A Multi-Institutional Study
por: Dai, Zhenhui, et al.
Publicado: (2021) -
PET/CT in Radiotherapy Planning for Head and Neck Cancer
por: Newbold, Katie, et al.
Publicado: (2012) -
Safety and Efficacy of Stereotactic Ablative Radiotherapy for Ultra-Central Lung Cancer
por: Wang, Bin, et al.
Publicado: (2022) -
Multi-Institutional Validation of Two-Streamed Deep Learning Method for Automated Delineation of Esophageal Gross Tumor Volume Using Planning CT and FDG-PET/CT
por: Ye, Xianghua, et al.
Publicado: (2022) -
The use of PET/CT in radiotherapy planning: contribution of deformable registration
por: Delikgoz Soykut, Ela, et al.
Publicado: (2013)