Cargando…
Collaborative privacy-preserving analysis of oncological data using multiparty homomorphic encryption
Real-world healthcare data sharing is instrumental in constructing broader-based and larger clinical datasets that may improve clinical decision-making research and outcomes. Stakeholders are frequently reluctant to share their data without guaranteed patient privacy, proper protection of their data...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10437415/ https://www.ncbi.nlm.nih.gov/pubmed/37549296 http://dx.doi.org/10.1073/pnas.2304415120 |
_version_ | 1785092518953615360 |
---|---|
author | Geva, Ravit Gusev, Alexander Polyakov, Yuriy Liram, Lior Rosolio, Oded Alexandru, Andreea Genise, Nicholas Blatt, Marcelo Duchin, Zohar Waissengrin, Barliz Mirelman, Dan Bukstein, Felix Blumenthal, Deborah T. Wolf, Ido Pelles-Avraham, Sharon Schaffer, Tali Lavi, Lee A. Micciancio, Daniele Vaikuntanathan, Vinod Badawi, Ahmad Al Goldwasser, Shafi |
author_facet | Geva, Ravit Gusev, Alexander Polyakov, Yuriy Liram, Lior Rosolio, Oded Alexandru, Andreea Genise, Nicholas Blatt, Marcelo Duchin, Zohar Waissengrin, Barliz Mirelman, Dan Bukstein, Felix Blumenthal, Deborah T. Wolf, Ido Pelles-Avraham, Sharon Schaffer, Tali Lavi, Lee A. Micciancio, Daniele Vaikuntanathan, Vinod Badawi, Ahmad Al Goldwasser, Shafi |
author_sort | Geva, Ravit |
collection | PubMed |
description | Real-world healthcare data sharing is instrumental in constructing broader-based and larger clinical datasets that may improve clinical decision-making research and outcomes. Stakeholders are frequently reluctant to share their data without guaranteed patient privacy, proper protection of their datasets, and control over the usage of their data. Fully homomorphic encryption (FHE) is a cryptographic capability that can address these issues by enabling computation on encrypted data without intermediate decryptions, so the analytics results are obtained without revealing the raw data. This work presents a toolset for collaborative privacy-preserving analysis of oncological data using multiparty FHE. Our toolset supports survival analysis, logistic regression training, and several common descriptive statistics. We demonstrate using oncological datasets that the toolset achieves high accuracy and practical performance, which scales well to larger datasets. As part of this work, we propose a cryptographic protocol for interactive bootstrapping in multiparty FHE, which is of independent interest. The toolset we develop is general-purpose and can be applied to other collaborative medical and healthcare application domains. |
format | Online Article Text |
id | pubmed-10437415 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-104374152023-08-19 Collaborative privacy-preserving analysis of oncological data using multiparty homomorphic encryption Geva, Ravit Gusev, Alexander Polyakov, Yuriy Liram, Lior Rosolio, Oded Alexandru, Andreea Genise, Nicholas Blatt, Marcelo Duchin, Zohar Waissengrin, Barliz Mirelman, Dan Bukstein, Felix Blumenthal, Deborah T. Wolf, Ido Pelles-Avraham, Sharon Schaffer, Tali Lavi, Lee A. Micciancio, Daniele Vaikuntanathan, Vinod Badawi, Ahmad Al Goldwasser, Shafi Proc Natl Acad Sci U S A Biological Sciences Real-world healthcare data sharing is instrumental in constructing broader-based and larger clinical datasets that may improve clinical decision-making research and outcomes. Stakeholders are frequently reluctant to share their data without guaranteed patient privacy, proper protection of their datasets, and control over the usage of their data. Fully homomorphic encryption (FHE) is a cryptographic capability that can address these issues by enabling computation on encrypted data without intermediate decryptions, so the analytics results are obtained without revealing the raw data. This work presents a toolset for collaborative privacy-preserving analysis of oncological data using multiparty FHE. Our toolset supports survival analysis, logistic regression training, and several common descriptive statistics. We demonstrate using oncological datasets that the toolset achieves high accuracy and practical performance, which scales well to larger datasets. As part of this work, we propose a cryptographic protocol for interactive bootstrapping in multiparty FHE, which is of independent interest. The toolset we develop is general-purpose and can be applied to other collaborative medical and healthcare application domains. National Academy of Sciences 2023-08-07 2023-08-15 /pmc/articles/PMC10437415/ /pubmed/37549296 http://dx.doi.org/10.1073/pnas.2304415120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Geva, Ravit Gusev, Alexander Polyakov, Yuriy Liram, Lior Rosolio, Oded Alexandru, Andreea Genise, Nicholas Blatt, Marcelo Duchin, Zohar Waissengrin, Barliz Mirelman, Dan Bukstein, Felix Blumenthal, Deborah T. Wolf, Ido Pelles-Avraham, Sharon Schaffer, Tali Lavi, Lee A. Micciancio, Daniele Vaikuntanathan, Vinod Badawi, Ahmad Al Goldwasser, Shafi Collaborative privacy-preserving analysis of oncological data using multiparty homomorphic encryption |
title | Collaborative privacy-preserving analysis of oncological data using multiparty homomorphic encryption |
title_full | Collaborative privacy-preserving analysis of oncological data using multiparty homomorphic encryption |
title_fullStr | Collaborative privacy-preserving analysis of oncological data using multiparty homomorphic encryption |
title_full_unstemmed | Collaborative privacy-preserving analysis of oncological data using multiparty homomorphic encryption |
title_short | Collaborative privacy-preserving analysis of oncological data using multiparty homomorphic encryption |
title_sort | collaborative privacy-preserving analysis of oncological data using multiparty homomorphic encryption |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10437415/ https://www.ncbi.nlm.nih.gov/pubmed/37549296 http://dx.doi.org/10.1073/pnas.2304415120 |
work_keys_str_mv | AT gevaravit collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption AT gusevalexander collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption AT polyakovyuriy collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption AT liramlior collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption AT rosoliooded collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption AT alexandruandreea collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption AT genisenicholas collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption AT blattmarcelo collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption AT duchinzohar collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption AT waissengrinbarliz collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption AT mirelmandan collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption AT buksteinfelix collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption AT blumenthaldeboraht collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption AT wolfido collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption AT pellesavrahamsharon collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption AT schaffertali collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption AT lavileea collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption AT miccianciodaniele collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption AT vaikuntanathanvinod collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption AT badawiahmadal collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption AT goldwassershafi collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption |