Cargando…

Collaborative privacy-preserving analysis of oncological data using multiparty homomorphic encryption

Real-world healthcare data sharing is instrumental in constructing broader-based and larger clinical datasets that may improve clinical decision-making research and outcomes. Stakeholders are frequently reluctant to share their data without guaranteed patient privacy, proper protection of their data...

Descripción completa

Detalles Bibliográficos
Autores principales: Geva, Ravit, Gusev, Alexander, Polyakov, Yuriy, Liram, Lior, Rosolio, Oded, Alexandru, Andreea, Genise, Nicholas, Blatt, Marcelo, Duchin, Zohar, Waissengrin, Barliz, Mirelman, Dan, Bukstein, Felix, Blumenthal, Deborah T., Wolf, Ido, Pelles-Avraham, Sharon, Schaffer, Tali, Lavi, Lee A., Micciancio, Daniele, Vaikuntanathan, Vinod, Badawi, Ahmad Al, Goldwasser, Shafi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10437415/
https://www.ncbi.nlm.nih.gov/pubmed/37549296
http://dx.doi.org/10.1073/pnas.2304415120
_version_ 1785092518953615360
author Geva, Ravit
Gusev, Alexander
Polyakov, Yuriy
Liram, Lior
Rosolio, Oded
Alexandru, Andreea
Genise, Nicholas
Blatt, Marcelo
Duchin, Zohar
Waissengrin, Barliz
Mirelman, Dan
Bukstein, Felix
Blumenthal, Deborah T.
Wolf, Ido
Pelles-Avraham, Sharon
Schaffer, Tali
Lavi, Lee A.
Micciancio, Daniele
Vaikuntanathan, Vinod
Badawi, Ahmad Al
Goldwasser, Shafi
author_facet Geva, Ravit
Gusev, Alexander
Polyakov, Yuriy
Liram, Lior
Rosolio, Oded
Alexandru, Andreea
Genise, Nicholas
Blatt, Marcelo
Duchin, Zohar
Waissengrin, Barliz
Mirelman, Dan
Bukstein, Felix
Blumenthal, Deborah T.
Wolf, Ido
Pelles-Avraham, Sharon
Schaffer, Tali
Lavi, Lee A.
Micciancio, Daniele
Vaikuntanathan, Vinod
Badawi, Ahmad Al
Goldwasser, Shafi
author_sort Geva, Ravit
collection PubMed
description Real-world healthcare data sharing is instrumental in constructing broader-based and larger clinical datasets that may improve clinical decision-making research and outcomes. Stakeholders are frequently reluctant to share their data without guaranteed patient privacy, proper protection of their datasets, and control over the usage of their data. Fully homomorphic encryption (FHE) is a cryptographic capability that can address these issues by enabling computation on encrypted data without intermediate decryptions, so the analytics results are obtained without revealing the raw data. This work presents a toolset for collaborative privacy-preserving analysis of oncological data using multiparty FHE. Our toolset supports survival analysis, logistic regression training, and several common descriptive statistics. We demonstrate using oncological datasets that the toolset achieves high accuracy and practical performance, which scales well to larger datasets. As part of this work, we propose a cryptographic protocol for interactive bootstrapping in multiparty FHE, which is of independent interest. The toolset we develop is general-purpose and can be applied to other collaborative medical and healthcare application domains.
format Online
Article
Text
id pubmed-10437415
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-104374152023-08-19 Collaborative privacy-preserving analysis of oncological data using multiparty homomorphic encryption Geva, Ravit Gusev, Alexander Polyakov, Yuriy Liram, Lior Rosolio, Oded Alexandru, Andreea Genise, Nicholas Blatt, Marcelo Duchin, Zohar Waissengrin, Barliz Mirelman, Dan Bukstein, Felix Blumenthal, Deborah T. Wolf, Ido Pelles-Avraham, Sharon Schaffer, Tali Lavi, Lee A. Micciancio, Daniele Vaikuntanathan, Vinod Badawi, Ahmad Al Goldwasser, Shafi Proc Natl Acad Sci U S A Biological Sciences Real-world healthcare data sharing is instrumental in constructing broader-based and larger clinical datasets that may improve clinical decision-making research and outcomes. Stakeholders are frequently reluctant to share their data without guaranteed patient privacy, proper protection of their datasets, and control over the usage of their data. Fully homomorphic encryption (FHE) is a cryptographic capability that can address these issues by enabling computation on encrypted data without intermediate decryptions, so the analytics results are obtained without revealing the raw data. This work presents a toolset for collaborative privacy-preserving analysis of oncological data using multiparty FHE. Our toolset supports survival analysis, logistic regression training, and several common descriptive statistics. We demonstrate using oncological datasets that the toolset achieves high accuracy and practical performance, which scales well to larger datasets. As part of this work, we propose a cryptographic protocol for interactive bootstrapping in multiparty FHE, which is of independent interest. The toolset we develop is general-purpose and can be applied to other collaborative medical and healthcare application domains. National Academy of Sciences 2023-08-07 2023-08-15 /pmc/articles/PMC10437415/ /pubmed/37549296 http://dx.doi.org/10.1073/pnas.2304415120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Geva, Ravit
Gusev, Alexander
Polyakov, Yuriy
Liram, Lior
Rosolio, Oded
Alexandru, Andreea
Genise, Nicholas
Blatt, Marcelo
Duchin, Zohar
Waissengrin, Barliz
Mirelman, Dan
Bukstein, Felix
Blumenthal, Deborah T.
Wolf, Ido
Pelles-Avraham, Sharon
Schaffer, Tali
Lavi, Lee A.
Micciancio, Daniele
Vaikuntanathan, Vinod
Badawi, Ahmad Al
Goldwasser, Shafi
Collaborative privacy-preserving analysis of oncological data using multiparty homomorphic encryption
title Collaborative privacy-preserving analysis of oncological data using multiparty homomorphic encryption
title_full Collaborative privacy-preserving analysis of oncological data using multiparty homomorphic encryption
title_fullStr Collaborative privacy-preserving analysis of oncological data using multiparty homomorphic encryption
title_full_unstemmed Collaborative privacy-preserving analysis of oncological data using multiparty homomorphic encryption
title_short Collaborative privacy-preserving analysis of oncological data using multiparty homomorphic encryption
title_sort collaborative privacy-preserving analysis of oncological data using multiparty homomorphic encryption
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10437415/
https://www.ncbi.nlm.nih.gov/pubmed/37549296
http://dx.doi.org/10.1073/pnas.2304415120
work_keys_str_mv AT gevaravit collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption
AT gusevalexander collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption
AT polyakovyuriy collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption
AT liramlior collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption
AT rosoliooded collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption
AT alexandruandreea collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption
AT genisenicholas collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption
AT blattmarcelo collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption
AT duchinzohar collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption
AT waissengrinbarliz collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption
AT mirelmandan collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption
AT buksteinfelix collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption
AT blumenthaldeboraht collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption
AT wolfido collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption
AT pellesavrahamsharon collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption
AT schaffertali collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption
AT lavileea collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption
AT miccianciodaniele collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption
AT vaikuntanathanvinod collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption
AT badawiahmadal collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption
AT goldwassershafi collaborativeprivacypreservinganalysisofoncologicaldatausingmultipartyhomomorphicencryption