Cargando…
Collaborative privacy-preserving analysis of oncological data using multiparty homomorphic encryption
Real-world healthcare data sharing is instrumental in constructing broader-based and larger clinical datasets that may improve clinical decision-making research and outcomes. Stakeholders are frequently reluctant to share their data without guaranteed patient privacy, proper protection of their data...
Autores principales: | Geva, Ravit, Gusev, Alexander, Polyakov, Yuriy, Liram, Lior, Rosolio, Oded, Alexandru, Andreea, Genise, Nicholas, Blatt, Marcelo, Duchin, Zohar, Waissengrin, Barliz, Mirelman, Dan, Bukstein, Felix, Blumenthal, Deborah T., Wolf, Ido, Pelles-Avraham, Sharon, Schaffer, Tali, Lavi, Lee A., Micciancio, Daniele, Vaikuntanathan, Vinod, Badawi, Ahmad Al, Goldwasser, Shafi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10437415/ https://www.ncbi.nlm.nih.gov/pubmed/37549296 http://dx.doi.org/10.1073/pnas.2304415120 |
Ejemplares similares
-
Effect of cannabis on oxaliplatin-induced peripheral neuropathy among oncology patients: a retrospective analysis
por: Waissengrin, Barliz, et al.
Publicado: (2021) -
Optimized homomorphic encryption solution for secure genome-wide association studies
por: Blatt, Marcelo, et al.
Publicado: (2020) -
Truly privacy-preserving federated analytics for precision medicine with multiparty homomorphic encryption
por: Froelicher, David, et al.
Publicado: (2021) -
Author Correction: Truly privacy-preserving federated analytics for precision medicine with multiparty homomorphic encryption
por: Froelicher, David, et al.
Publicado: (2021) -
Achieving GWAS with homomorphic encryption
por: Sim, Jun Jie, et al.
Publicado: (2020)