Cargando…
Enhancing anomaly detection in distributed power systems using autoencoder-based federated learning
The growing use of Internet-of-Things devices in electric power systems has resulted in increased complexity and flexibility, making monitoring power usage critical for effective system maintenance and detecting abnormal behavior. However, traditional anomalous power consumption detection methods st...
Autores principales: | Kea, Kimleang, Han, Youngsun, Kim, Tae-Kyung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10437833/ https://www.ncbi.nlm.nih.gov/pubmed/37594957 http://dx.doi.org/10.1371/journal.pone.0290337 |
Ejemplares similares
-
A Deep Learning Approach to Detect Anomalies in an Electric Power Steering System
por: Alabe, Lawal Wale, et al.
Publicado: (2022) -
Autoencoders for anomaly detection at LHCb
por: Radziunas Salinas, Yago
Publicado: (2022) -
Anomaly Detection With Conditional Variational Autoencoders
por: Pol, Adrian Alan, et al.
Publicado: (2020) -
Anomaly detection in images with shared autoencoders
por: Jia, Haoyang, et al.
Publicado: (2023) -
Attention Autoencoder for Generative Latent Representational Learning in Anomaly Detection
por: Oluwasanmi, Ariyo, et al.
Publicado: (2021)