Cargando…

A new method for fault identification of T-connection transmission line based on multi-scale traveling wave reactive power and random forest

Though the traditional fault diagnosis method of T-connected transmission lines can identify the faults inside and outside the area, it can not identify the specific branches. To improve the accuracy and reliability of fault diagnosis of T-connection transmission lines, a new method is proposed to i...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhong, Yawen, Yang, Jie, Wang, Sheng, Deng, Sijing, Hu, Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10437885/
https://www.ncbi.nlm.nih.gov/pubmed/37594949
http://dx.doi.org/10.1371/journal.pone.0284937
Descripción
Sumario:Though the traditional fault diagnosis method of T-connected transmission lines can identify the faults inside and outside the area, it can not identify the specific branches. To improve the accuracy and reliability of fault diagnosis of T-connection transmission lines, a new method is proposed to identify specific faulty branches of T-connection transmission lines based on multi-scale traveling wave reactive power and random forest. Based on the S-transform, the mean and sum ratios of the corresponding short-time series traveling wave reactive powers of each two traveling wave protection units at multiple frequencies are calculated respectively to form the fault feature vector sample set of the T-connection transmission line. A random forest fault branch identification model is established, and it is trained and tested by the fault feature sample set of T-connection transmission line to identify the fault branch. The simulation results show that the proposed algorithm can identify the branch where the fault is located inside and outside the protection zone of T-connection transmission line quickly and accurately under various working conditions. This method also shows good performance to identify faults even under the situation of CT saturation, noise influence and data loss.