Cargando…

Comparative genomics reveals extensive intra-species genetic divergence of the prevalent gut commensal Ruminococcus gnavus

Ruminococcus gnavus is prevalent in the intestines of humans and animals, and ambiguities have been reported regarding its relations with the development of diseases and host well-being. We postulate the ambiguities of its function in different cases may be attributed to strain-level variability of...

Descripción completa

Detalles Bibliográficos
Autores principales: Abdugheni, Rashidin, Liu, Chang, Liu, Feng-Lan, Zhou, Nan, Jiang, Cheng-Ying, Liu, Yonghong, Li, Li, Li, Wen-Jun, Liu, Shuang-Jiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Microbiology Society 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10438805/
https://www.ncbi.nlm.nih.gov/pubmed/37486746
http://dx.doi.org/10.1099/mgen.0.001071
_version_ 1785092806202621952
author Abdugheni, Rashidin
Liu, Chang
Liu, Feng-Lan
Zhou, Nan
Jiang, Cheng-Ying
Liu, Yonghong
Li, Li
Li, Wen-Jun
Liu, Shuang-Jiang
author_facet Abdugheni, Rashidin
Liu, Chang
Liu, Feng-Lan
Zhou, Nan
Jiang, Cheng-Ying
Liu, Yonghong
Li, Li
Li, Wen-Jun
Liu, Shuang-Jiang
author_sort Abdugheni, Rashidin
collection PubMed
description Ruminococcus gnavus is prevalent in the intestines of humans and animals, and ambiguities have been reported regarding its relations with the development of diseases and host well-being. We postulate the ambiguities of its function in different cases may be attributed to strain-level variability of genomic features of R. gnavus . We performed comparative genomic and pathogenicity prediction analysis on 152 filtered high-quality genomes, including 4 genomes of strains isolated from healthy adults in this study. The mean G+C content of genomes of R. gnavus was 42.73±0.33 mol%, and the mean genome size was 3.46±0.34 Mbp. Genome-wide evolutionary analysis revealed R. gnavus genomes were divided into three major phylogenetic clusters. Pan–core genome analysis revealed that there was a total of 28 072 predicted genes, and the core genes, soft-core genes, shell genes and cloud genes accounted for 3.74 % (1051/28 072), 1.75 % (491/28 072), 9.88 % (2774/28 072) and 84.63 % (23 756/28 072) of the total genes, respectively. The small proportion of core genes reflected the wide divergence among R. gnavus strains. We found certain coding sequences with determined health benefits (such as vitamin production and arsenic detoxification), whilst some had an implication of health adversity (such as sulfide dehydrogenase subunits). The functions of the majority of core genes were unknown. The most widespread genes functioning in antibiotic resistance and virulence are tetO (tetracycline-resistance gene, present in 75 strains) and cps4J (capsular polysaccharide biosynthesis protein Cps4J encoding gene, detected in 3 genomes), respectively. Our results revealed genomic divergence and the existence of certain safety-relevant factors of R. gnavus . This study provides new insights for understanding the genomic features and health relevance of R. gnavus , and raises concerns regarding predicted prevalent pathogenicity and antibiotic resistance among most of the strains.
format Online
Article
Text
id pubmed-10438805
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Microbiology Society
record_format MEDLINE/PubMed
spelling pubmed-104388052023-08-19 Comparative genomics reveals extensive intra-species genetic divergence of the prevalent gut commensal Ruminococcus gnavus Abdugheni, Rashidin Liu, Chang Liu, Feng-Lan Zhou, Nan Jiang, Cheng-Ying Liu, Yonghong Li, Li Li, Wen-Jun Liu, Shuang-Jiang Microb Genom Research Articles Ruminococcus gnavus is prevalent in the intestines of humans and animals, and ambiguities have been reported regarding its relations with the development of diseases and host well-being. We postulate the ambiguities of its function in different cases may be attributed to strain-level variability of genomic features of R. gnavus . We performed comparative genomic and pathogenicity prediction analysis on 152 filtered high-quality genomes, including 4 genomes of strains isolated from healthy adults in this study. The mean G+C content of genomes of R. gnavus was 42.73±0.33 mol%, and the mean genome size was 3.46±0.34 Mbp. Genome-wide evolutionary analysis revealed R. gnavus genomes were divided into three major phylogenetic clusters. Pan–core genome analysis revealed that there was a total of 28 072 predicted genes, and the core genes, soft-core genes, shell genes and cloud genes accounted for 3.74 % (1051/28 072), 1.75 % (491/28 072), 9.88 % (2774/28 072) and 84.63 % (23 756/28 072) of the total genes, respectively. The small proportion of core genes reflected the wide divergence among R. gnavus strains. We found certain coding sequences with determined health benefits (such as vitamin production and arsenic detoxification), whilst some had an implication of health adversity (such as sulfide dehydrogenase subunits). The functions of the majority of core genes were unknown. The most widespread genes functioning in antibiotic resistance and virulence are tetO (tetracycline-resistance gene, present in 75 strains) and cps4J (capsular polysaccharide biosynthesis protein Cps4J encoding gene, detected in 3 genomes), respectively. Our results revealed genomic divergence and the existence of certain safety-relevant factors of R. gnavus . This study provides new insights for understanding the genomic features and health relevance of R. gnavus , and raises concerns regarding predicted prevalent pathogenicity and antibiotic resistance among most of the strains. Microbiology Society 2023-07-24 /pmc/articles/PMC10438805/ /pubmed/37486746 http://dx.doi.org/10.1099/mgen.0.001071 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License.
spellingShingle Research Articles
Abdugheni, Rashidin
Liu, Chang
Liu, Feng-Lan
Zhou, Nan
Jiang, Cheng-Ying
Liu, Yonghong
Li, Li
Li, Wen-Jun
Liu, Shuang-Jiang
Comparative genomics reveals extensive intra-species genetic divergence of the prevalent gut commensal Ruminococcus gnavus
title Comparative genomics reveals extensive intra-species genetic divergence of the prevalent gut commensal Ruminococcus gnavus
title_full Comparative genomics reveals extensive intra-species genetic divergence of the prevalent gut commensal Ruminococcus gnavus
title_fullStr Comparative genomics reveals extensive intra-species genetic divergence of the prevalent gut commensal Ruminococcus gnavus
title_full_unstemmed Comparative genomics reveals extensive intra-species genetic divergence of the prevalent gut commensal Ruminococcus gnavus
title_short Comparative genomics reveals extensive intra-species genetic divergence of the prevalent gut commensal Ruminococcus gnavus
title_sort comparative genomics reveals extensive intra-species genetic divergence of the prevalent gut commensal ruminococcus gnavus
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10438805/
https://www.ncbi.nlm.nih.gov/pubmed/37486746
http://dx.doi.org/10.1099/mgen.0.001071
work_keys_str_mv AT abdughenirashidin comparativegenomicsrevealsextensiveintraspeciesgeneticdivergenceoftheprevalentgutcommensalruminococcusgnavus
AT liuchang comparativegenomicsrevealsextensiveintraspeciesgeneticdivergenceoftheprevalentgutcommensalruminococcusgnavus
AT liufenglan comparativegenomicsrevealsextensiveintraspeciesgeneticdivergenceoftheprevalentgutcommensalruminococcusgnavus
AT zhounan comparativegenomicsrevealsextensiveintraspeciesgeneticdivergenceoftheprevalentgutcommensalruminococcusgnavus
AT jiangchengying comparativegenomicsrevealsextensiveintraspeciesgeneticdivergenceoftheprevalentgutcommensalruminococcusgnavus
AT liuyonghong comparativegenomicsrevealsextensiveintraspeciesgeneticdivergenceoftheprevalentgutcommensalruminococcusgnavus
AT lili comparativegenomicsrevealsextensiveintraspeciesgeneticdivergenceoftheprevalentgutcommensalruminococcusgnavus
AT liwenjun comparativegenomicsrevealsextensiveintraspeciesgeneticdivergenceoftheprevalentgutcommensalruminococcusgnavus
AT liushuangjiang comparativegenomicsrevealsextensiveintraspeciesgeneticdivergenceoftheprevalentgutcommensalruminococcusgnavus