Cargando…
Kernel-wise difference minimization for convolutional neural network compression in metaverse
Convolutional neural networks have achieved remarkable success in computer vision research. However, to further improve their performance, network models have become increasingly complex and require more memory and computational resources. As a result, model compression has become an essential area...
Autor principal: | Chang, Yi-Ting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10438991/ https://www.ncbi.nlm.nih.gov/pubmed/37600500 http://dx.doi.org/10.3389/fdata.2023.1200382 |
Ejemplares similares
-
Structural Compression of Convolutional Neural Networks with Applications in Interpretability
por: Abbasi-Asl, Reza, et al.
Publicado: (2021) -
MetaOntology: Toward developing an ontology for the metaverse
por: Abu-Salih, Bilal
Publicado: (2022) -
Real-time arrhythmia detection using convolutional neural networks
por: Vu, Thong, et al.
Publicado: (2023) -
Non-invasive detection of anemia using lip mucosa images transfer learning convolutional neural networks
por: Mansour, Mohammed, et al.
Publicado: (2023) -
Proximity-Based Compression for Network Embedding
por: Islam, Muhammad Ifte, et al.
Publicado: (2021)