Cargando…
Simultaneous clustering and variable selection: A novel algorithm and model selection procedure
The growing availability of high-dimensional data sets offers behavioral scientists an unprecedented opportunity to integrate the information hidden in the novel types of data (e.g., genetic data, social media data, and GPS tracks, etc.,) and thereby obtain a more detailed and comprehensive view tow...
Autores principales: | Yuan, Shuai, De Roover, Kim, Van Deun, Katrijn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439051/ https://www.ncbi.nlm.nih.gov/pubmed/36085542 http://dx.doi.org/10.3758/s13428-022-01795-7 |
Ejemplares similares
-
Variable Selection in the Regularized Simultaneous Component Analysis Method for Multi-Source Data Integration
por: Gu, Zhengguo, et al.
Publicado: (2019) -
RegularizedSCA: Regularized simultaneous component analysis of multiblock data in R
por: Gu, Zhengguo, et al.
Publicado: (2018) -
Common and Cluster-Specific Simultaneous Component Analysis
por: De Roover, Kim, et al.
Publicado: (2013) -
Stimulus material selection for the Dutch famous faces test for older adults
por: van den Elzen, Evi H. T., et al.
Publicado: (2023) -
A flexible framework for sparse simultaneous component based data integration
por: Van Deun, Katrijn, et al.
Publicado: (2011)