Cargando…

Rating norms should be calculated from cumulative link mixed effects models

Studies which provide norms of Likert ratings typically report per-item summary statistics. Traditionally, these summary statistics comprise the mean and the standard deviation (SD) of the ratings, and the number of observations. Such summary statistics can preserve the rank order of items, but prov...

Descripción completa

Detalles Bibliográficos
Autores principales: Taylor, Jack E., Rousselet, Guillaume A., Scheepers, Christoph, Sereno, Sara C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439063/
https://www.ncbi.nlm.nih.gov/pubmed/36103049
http://dx.doi.org/10.3758/s13428-022-01814-7
Descripción
Sumario:Studies which provide norms of Likert ratings typically report per-item summary statistics. Traditionally, these summary statistics comprise the mean and the standard deviation (SD) of the ratings, and the number of observations. Such summary statistics can preserve the rank order of items, but provide distorted estimates of the relative distances between items because of the ordinal nature of Likert ratings. Inter-item relations in such ordinal scales can be more appropriately modelled by cumulative link mixed effects models (CLMMs). In a series of simulations, and with a reanalysis of an existing rating norms dataset, we show that CLMMs can be used to more accurately norm items, and can provide summary statistics analogous to the traditionally reported means and SDs, but which are disentangled from participants’ response biases. CLMMs can be applied to solve important statistical issues that exist for more traditional analyses of rating norms. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.3758/s13428-022-01814-7.