Cargando…

iCLOTS: open-source, artificial intelligence-enabled software for analyses of blood cells in microfluidic and microscopy-based assays

While microscopy-based cellular assays, including microfluidics, have significantly advanced over the last several decades, there has not been concurrent development of widely-accessible techniques to analyze time-dependent microscopy data incorporating phenomena such as fluid flow and dynamic cell...

Descripción completa

Detalles Bibliográficos
Autores principales: Fay, Meredith E., Oshinowo, Oluwamayokun, Iffrig, Elizabeth, Fibben, Kirby S., Caruso, Christina, Hansen, Scott, Musick, Jamie O., Valdez, José M., Azer, Sally S., Mannino, Robert G., Choi, Hyoann, Zhang, Dan Y., Williams, Evelyn K., Evans, Erica N., Kanne, Celeste K., Kemp, Melissa L., Sheehan, Vivien A., Carden, Marcus A., Bennett, Carolyn M., Wood, David K., Lam, Wilbur A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439163/
https://www.ncbi.nlm.nih.gov/pubmed/37596311
http://dx.doi.org/10.1038/s41467-023-40522-4
_version_ 1785092883537199104
author Fay, Meredith E.
Oshinowo, Oluwamayokun
Iffrig, Elizabeth
Fibben, Kirby S.
Caruso, Christina
Hansen, Scott
Musick, Jamie O.
Valdez, José M.
Azer, Sally S.
Mannino, Robert G.
Choi, Hyoann
Zhang, Dan Y.
Williams, Evelyn K.
Evans, Erica N.
Kanne, Celeste K.
Kemp, Melissa L.
Sheehan, Vivien A.
Carden, Marcus A.
Bennett, Carolyn M.
Wood, David K.
Lam, Wilbur A.
author_facet Fay, Meredith E.
Oshinowo, Oluwamayokun
Iffrig, Elizabeth
Fibben, Kirby S.
Caruso, Christina
Hansen, Scott
Musick, Jamie O.
Valdez, José M.
Azer, Sally S.
Mannino, Robert G.
Choi, Hyoann
Zhang, Dan Y.
Williams, Evelyn K.
Evans, Erica N.
Kanne, Celeste K.
Kemp, Melissa L.
Sheehan, Vivien A.
Carden, Marcus A.
Bennett, Carolyn M.
Wood, David K.
Lam, Wilbur A.
author_sort Fay, Meredith E.
collection PubMed
description While microscopy-based cellular assays, including microfluidics, have significantly advanced over the last several decades, there has not been concurrent development of widely-accessible techniques to analyze time-dependent microscopy data incorporating phenomena such as fluid flow and dynamic cell adhesion. As such, experimentalists typically rely on error-prone and time-consuming manual analysis, resulting in lost resolution and missed opportunities for innovative metrics. We present a user-adaptable toolkit packaged into the open-source, standalone Interactive Cellular assay Labeled Observation and Tracking Software (iCLOTS). We benchmark cell adhesion, single-cell tracking, velocity profile, and multiscale microfluidic-centric applications with blood samples, the prototypical biofluid specimen. Moreover, machine learning algorithms characterize previously imperceptible data groupings from numerical outputs. Free to download/use, iCLOTS addresses a need for a field stymied by a lack of analytical tools for innovative, physiologically-relevant assays of any design, democratizing use of well-validated algorithms for all end-user biomedical researchers who would benefit from advanced computational methods.
format Online
Article
Text
id pubmed-10439163
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-104391632023-08-20 iCLOTS: open-source, artificial intelligence-enabled software for analyses of blood cells in microfluidic and microscopy-based assays Fay, Meredith E. Oshinowo, Oluwamayokun Iffrig, Elizabeth Fibben, Kirby S. Caruso, Christina Hansen, Scott Musick, Jamie O. Valdez, José M. Azer, Sally S. Mannino, Robert G. Choi, Hyoann Zhang, Dan Y. Williams, Evelyn K. Evans, Erica N. Kanne, Celeste K. Kemp, Melissa L. Sheehan, Vivien A. Carden, Marcus A. Bennett, Carolyn M. Wood, David K. Lam, Wilbur A. Nat Commun Article While microscopy-based cellular assays, including microfluidics, have significantly advanced over the last several decades, there has not been concurrent development of widely-accessible techniques to analyze time-dependent microscopy data incorporating phenomena such as fluid flow and dynamic cell adhesion. As such, experimentalists typically rely on error-prone and time-consuming manual analysis, resulting in lost resolution and missed opportunities for innovative metrics. We present a user-adaptable toolkit packaged into the open-source, standalone Interactive Cellular assay Labeled Observation and Tracking Software (iCLOTS). We benchmark cell adhesion, single-cell tracking, velocity profile, and multiscale microfluidic-centric applications with blood samples, the prototypical biofluid specimen. Moreover, machine learning algorithms characterize previously imperceptible data groupings from numerical outputs. Free to download/use, iCLOTS addresses a need for a field stymied by a lack of analytical tools for innovative, physiologically-relevant assays of any design, democratizing use of well-validated algorithms for all end-user biomedical researchers who would benefit from advanced computational methods. Nature Publishing Group UK 2023-08-18 /pmc/articles/PMC10439163/ /pubmed/37596311 http://dx.doi.org/10.1038/s41467-023-40522-4 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Fay, Meredith E.
Oshinowo, Oluwamayokun
Iffrig, Elizabeth
Fibben, Kirby S.
Caruso, Christina
Hansen, Scott
Musick, Jamie O.
Valdez, José M.
Azer, Sally S.
Mannino, Robert G.
Choi, Hyoann
Zhang, Dan Y.
Williams, Evelyn K.
Evans, Erica N.
Kanne, Celeste K.
Kemp, Melissa L.
Sheehan, Vivien A.
Carden, Marcus A.
Bennett, Carolyn M.
Wood, David K.
Lam, Wilbur A.
iCLOTS: open-source, artificial intelligence-enabled software for analyses of blood cells in microfluidic and microscopy-based assays
title iCLOTS: open-source, artificial intelligence-enabled software for analyses of blood cells in microfluidic and microscopy-based assays
title_full iCLOTS: open-source, artificial intelligence-enabled software for analyses of blood cells in microfluidic and microscopy-based assays
title_fullStr iCLOTS: open-source, artificial intelligence-enabled software for analyses of blood cells in microfluidic and microscopy-based assays
title_full_unstemmed iCLOTS: open-source, artificial intelligence-enabled software for analyses of blood cells in microfluidic and microscopy-based assays
title_short iCLOTS: open-source, artificial intelligence-enabled software for analyses of blood cells in microfluidic and microscopy-based assays
title_sort iclots: open-source, artificial intelligence-enabled software for analyses of blood cells in microfluidic and microscopy-based assays
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439163/
https://www.ncbi.nlm.nih.gov/pubmed/37596311
http://dx.doi.org/10.1038/s41467-023-40522-4
work_keys_str_mv AT faymeredithe iclotsopensourceartificialintelligenceenabledsoftwareforanalysesofbloodcellsinmicrofluidicandmicroscopybasedassays
AT oshinowooluwamayokun iclotsopensourceartificialintelligenceenabledsoftwareforanalysesofbloodcellsinmicrofluidicandmicroscopybasedassays
AT iffrigelizabeth iclotsopensourceartificialintelligenceenabledsoftwareforanalysesofbloodcellsinmicrofluidicandmicroscopybasedassays
AT fibbenkirbys iclotsopensourceartificialintelligenceenabledsoftwareforanalysesofbloodcellsinmicrofluidicandmicroscopybasedassays
AT carusochristina iclotsopensourceartificialintelligenceenabledsoftwareforanalysesofbloodcellsinmicrofluidicandmicroscopybasedassays
AT hansenscott iclotsopensourceartificialintelligenceenabledsoftwareforanalysesofbloodcellsinmicrofluidicandmicroscopybasedassays
AT musickjamieo iclotsopensourceartificialintelligenceenabledsoftwareforanalysesofbloodcellsinmicrofluidicandmicroscopybasedassays
AT valdezjosem iclotsopensourceartificialintelligenceenabledsoftwareforanalysesofbloodcellsinmicrofluidicandmicroscopybasedassays
AT azersallys iclotsopensourceartificialintelligenceenabledsoftwareforanalysesofbloodcellsinmicrofluidicandmicroscopybasedassays
AT manninorobertg iclotsopensourceartificialintelligenceenabledsoftwareforanalysesofbloodcellsinmicrofluidicandmicroscopybasedassays
AT choihyoann iclotsopensourceartificialintelligenceenabledsoftwareforanalysesofbloodcellsinmicrofluidicandmicroscopybasedassays
AT zhangdany iclotsopensourceartificialintelligenceenabledsoftwareforanalysesofbloodcellsinmicrofluidicandmicroscopybasedassays
AT williamsevelynk iclotsopensourceartificialintelligenceenabledsoftwareforanalysesofbloodcellsinmicrofluidicandmicroscopybasedassays
AT evanserican iclotsopensourceartificialintelligenceenabledsoftwareforanalysesofbloodcellsinmicrofluidicandmicroscopybasedassays
AT kannecelestek iclotsopensourceartificialintelligenceenabledsoftwareforanalysesofbloodcellsinmicrofluidicandmicroscopybasedassays
AT kempmelissal iclotsopensourceartificialintelligenceenabledsoftwareforanalysesofbloodcellsinmicrofluidicandmicroscopybasedassays
AT sheehanviviena iclotsopensourceartificialintelligenceenabledsoftwareforanalysesofbloodcellsinmicrofluidicandmicroscopybasedassays
AT cardenmarcusa iclotsopensourceartificialintelligenceenabledsoftwareforanalysesofbloodcellsinmicrofluidicandmicroscopybasedassays
AT bennettcarolynm iclotsopensourceartificialintelligenceenabledsoftwareforanalysesofbloodcellsinmicrofluidicandmicroscopybasedassays
AT wooddavidk iclotsopensourceartificialintelligenceenabledsoftwareforanalysesofbloodcellsinmicrofluidicandmicroscopybasedassays
AT lamwilbura iclotsopensourceartificialintelligenceenabledsoftwareforanalysesofbloodcellsinmicrofluidicandmicroscopybasedassays