Cargando…

Robotic pendant drop: containerless liquid for μs-resolved, AI-executable XPCS

The dynamics and structure of mixed phases in a complex fluid can significantly impact its material properties, such as viscoelasticity. Small-angle X-ray Photon Correlation Spectroscopy (SA-XPCS) can probe the spontaneous spatial fluctuations of the mixed phases under various in situ environments o...

Descripción completa

Detalles Bibliográficos
Autores principales: Ozgulbas, Doga Yamac, Jensen, Don, Butler, Rory, Vescovi, Rafael, Foster, Ian T., Irvin, Michael, Nakaye, Yasukazu, Chu, Miaoqi, Dufresne, Eric M., Seifert, Soenke, Babnigg, Gyorgy, Ramanathan, Arvind, Zhang, Qingteng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439219/
https://www.ncbi.nlm.nih.gov/pubmed/37596264
http://dx.doi.org/10.1038/s41377-023-01233-z
_version_ 1785092898872623104
author Ozgulbas, Doga Yamac
Jensen, Don
Butler, Rory
Vescovi, Rafael
Foster, Ian T.
Irvin, Michael
Nakaye, Yasukazu
Chu, Miaoqi
Dufresne, Eric M.
Seifert, Soenke
Babnigg, Gyorgy
Ramanathan, Arvind
Zhang, Qingteng
author_facet Ozgulbas, Doga Yamac
Jensen, Don
Butler, Rory
Vescovi, Rafael
Foster, Ian T.
Irvin, Michael
Nakaye, Yasukazu
Chu, Miaoqi
Dufresne, Eric M.
Seifert, Soenke
Babnigg, Gyorgy
Ramanathan, Arvind
Zhang, Qingteng
author_sort Ozgulbas, Doga Yamac
collection PubMed
description The dynamics and structure of mixed phases in a complex fluid can significantly impact its material properties, such as viscoelasticity. Small-angle X-ray Photon Correlation Spectroscopy (SA-XPCS) can probe the spontaneous spatial fluctuations of the mixed phases under various in situ environments over wide spatiotemporal ranges (10(−6)–10(3) s /10(−10)–10(−6) m). Tailored material design, however, requires searching through a massive number of sample compositions and experimental parameters, which is beyond the bandwidth of the current coherent X-ray beamline. Using 3.7-μs-resolved XPCS synchronized with the clock frequency at the Advanced Photon Source, we demonstrated the consistency between the Brownian dynamics of ~100 nm diameter colloidal silica nanoparticles measured from an enclosed pendant drop and a sealed capillary. The electronic pipette can also be mounted on a robotic arm to access different stock solutions and create complex fluids with highly-repeatable and precisely controlled composition profiles. This closed-loop, AI-executable protocol is applicable to light scattering techniques regardless of the light wavelength and optical coherence, and is a first step towards high-throughput, autonomous material discovery.
format Online
Article
Text
id pubmed-10439219
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-104392192023-08-20 Robotic pendant drop: containerless liquid for μs-resolved, AI-executable XPCS Ozgulbas, Doga Yamac Jensen, Don Butler, Rory Vescovi, Rafael Foster, Ian T. Irvin, Michael Nakaye, Yasukazu Chu, Miaoqi Dufresne, Eric M. Seifert, Soenke Babnigg, Gyorgy Ramanathan, Arvind Zhang, Qingteng Light Sci Appl Article The dynamics and structure of mixed phases in a complex fluid can significantly impact its material properties, such as viscoelasticity. Small-angle X-ray Photon Correlation Spectroscopy (SA-XPCS) can probe the spontaneous spatial fluctuations of the mixed phases under various in situ environments over wide spatiotemporal ranges (10(−6)–10(3) s /10(−10)–10(−6) m). Tailored material design, however, requires searching through a massive number of sample compositions and experimental parameters, which is beyond the bandwidth of the current coherent X-ray beamline. Using 3.7-μs-resolved XPCS synchronized with the clock frequency at the Advanced Photon Source, we demonstrated the consistency between the Brownian dynamics of ~100 nm diameter colloidal silica nanoparticles measured from an enclosed pendant drop and a sealed capillary. The electronic pipette can also be mounted on a robotic arm to access different stock solutions and create complex fluids with highly-repeatable and precisely controlled composition profiles. This closed-loop, AI-executable protocol is applicable to light scattering techniques regardless of the light wavelength and optical coherence, and is a first step towards high-throughput, autonomous material discovery. Nature Publishing Group UK 2023-08-18 /pmc/articles/PMC10439219/ /pubmed/37596264 http://dx.doi.org/10.1038/s41377-023-01233-z Text en © UChicago Argonne, LLC, Operator of Argonne National Laboratory 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Ozgulbas, Doga Yamac
Jensen, Don
Butler, Rory
Vescovi, Rafael
Foster, Ian T.
Irvin, Michael
Nakaye, Yasukazu
Chu, Miaoqi
Dufresne, Eric M.
Seifert, Soenke
Babnigg, Gyorgy
Ramanathan, Arvind
Zhang, Qingteng
Robotic pendant drop: containerless liquid for μs-resolved, AI-executable XPCS
title Robotic pendant drop: containerless liquid for μs-resolved, AI-executable XPCS
title_full Robotic pendant drop: containerless liquid for μs-resolved, AI-executable XPCS
title_fullStr Robotic pendant drop: containerless liquid for μs-resolved, AI-executable XPCS
title_full_unstemmed Robotic pendant drop: containerless liquid for μs-resolved, AI-executable XPCS
title_short Robotic pendant drop: containerless liquid for μs-resolved, AI-executable XPCS
title_sort robotic pendant drop: containerless liquid for μs-resolved, ai-executable xpcs
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439219/
https://www.ncbi.nlm.nih.gov/pubmed/37596264
http://dx.doi.org/10.1038/s41377-023-01233-z
work_keys_str_mv AT ozgulbasdogayamac roboticpendantdropcontainerlessliquidformsresolvedaiexecutablexpcs
AT jensendon roboticpendantdropcontainerlessliquidformsresolvedaiexecutablexpcs
AT butlerrory roboticpendantdropcontainerlessliquidformsresolvedaiexecutablexpcs
AT vescovirafael roboticpendantdropcontainerlessliquidformsresolvedaiexecutablexpcs
AT fosteriant roboticpendantdropcontainerlessliquidformsresolvedaiexecutablexpcs
AT irvinmichael roboticpendantdropcontainerlessliquidformsresolvedaiexecutablexpcs
AT nakayeyasukazu roboticpendantdropcontainerlessliquidformsresolvedaiexecutablexpcs
AT chumiaoqi roboticpendantdropcontainerlessliquidformsresolvedaiexecutablexpcs
AT dufresneericm roboticpendantdropcontainerlessliquidformsresolvedaiexecutablexpcs
AT seifertsoenke roboticpendantdropcontainerlessliquidformsresolvedaiexecutablexpcs
AT babnigggyorgy roboticpendantdropcontainerlessliquidformsresolvedaiexecutablexpcs
AT ramanathanarvind roboticpendantdropcontainerlessliquidformsresolvedaiexecutablexpcs
AT zhangqingteng roboticpendantdropcontainerlessliquidformsresolvedaiexecutablexpcs