Cargando…
Non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics
The tumor microenvironment (TME) plays a critical role in disease progression and is a key determinant of therapeutic response in cancer patients. Here, we propose a noninvasive approach to predict the TME status from radiological images by combining radiomics and deep learning analyses. Using multi...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439253/ https://www.ncbi.nlm.nih.gov/pubmed/37557177 http://dx.doi.org/10.1016/j.xcrm.2023.101146 |
_version_ | 1785092907248648192 |
---|---|
author | Jiang, Yuming Zhou, Kangneng Sun, Zepang Wang, Hongyu Xie, Jingjing Zhang, Taojun Sang, Shengtian Islam, Md Tauhidul Wang, Jen-Yeu Chen, Chuanli Yuan, Qingyu Xi, Sujuan Li, Tuanjie Xu, Yikai Xiong, Wenjun Wang, Wei Li, Guoxin Li, Ruijiang |
author_facet | Jiang, Yuming Zhou, Kangneng Sun, Zepang Wang, Hongyu Xie, Jingjing Zhang, Taojun Sang, Shengtian Islam, Md Tauhidul Wang, Jen-Yeu Chen, Chuanli Yuan, Qingyu Xi, Sujuan Li, Tuanjie Xu, Yikai Xiong, Wenjun Wang, Wei Li, Guoxin Li, Ruijiang |
author_sort | Jiang, Yuming |
collection | PubMed |
description | The tumor microenvironment (TME) plays a critical role in disease progression and is a key determinant of therapeutic response in cancer patients. Here, we propose a noninvasive approach to predict the TME status from radiological images by combining radiomics and deep learning analyses. Using multi-institution cohorts of 2,686 patients with gastric cancer, we show that the radiological model accurately predicted the TME status and is an independent prognostic factor beyond clinicopathologic variables. The model further predicts the benefit from adjuvant chemotherapy for patients with localized disease. In patients treated with checkpoint blockade immunotherapy, the model predicts clinical response and further improves predictive accuracy when combined with existing biomarkers. Our approach enables noninvasive assessment of the TME, which opens the door for longitudinal monitoring and tracking response to cancer therapy. Given the routine use of radiologic imaging in oncology, our approach can be extended to many other solid tumor types. |
format | Online Article Text |
id | pubmed-10439253 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-104392532023-08-20 Non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics Jiang, Yuming Zhou, Kangneng Sun, Zepang Wang, Hongyu Xie, Jingjing Zhang, Taojun Sang, Shengtian Islam, Md Tauhidul Wang, Jen-Yeu Chen, Chuanli Yuan, Qingyu Xi, Sujuan Li, Tuanjie Xu, Yikai Xiong, Wenjun Wang, Wei Li, Guoxin Li, Ruijiang Cell Rep Med Article The tumor microenvironment (TME) plays a critical role in disease progression and is a key determinant of therapeutic response in cancer patients. Here, we propose a noninvasive approach to predict the TME status from radiological images by combining radiomics and deep learning analyses. Using multi-institution cohorts of 2,686 patients with gastric cancer, we show that the radiological model accurately predicted the TME status and is an independent prognostic factor beyond clinicopathologic variables. The model further predicts the benefit from adjuvant chemotherapy for patients with localized disease. In patients treated with checkpoint blockade immunotherapy, the model predicts clinical response and further improves predictive accuracy when combined with existing biomarkers. Our approach enables noninvasive assessment of the TME, which opens the door for longitudinal monitoring and tracking response to cancer therapy. Given the routine use of radiologic imaging in oncology, our approach can be extended to many other solid tumor types. Elsevier 2023-08-08 /pmc/articles/PMC10439253/ /pubmed/37557177 http://dx.doi.org/10.1016/j.xcrm.2023.101146 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jiang, Yuming Zhou, Kangneng Sun, Zepang Wang, Hongyu Xie, Jingjing Zhang, Taojun Sang, Shengtian Islam, Md Tauhidul Wang, Jen-Yeu Chen, Chuanli Yuan, Qingyu Xi, Sujuan Li, Tuanjie Xu, Yikai Xiong, Wenjun Wang, Wei Li, Guoxin Li, Ruijiang Non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics |
title | Non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics |
title_full | Non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics |
title_fullStr | Non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics |
title_full_unstemmed | Non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics |
title_short | Non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics |
title_sort | non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439253/ https://www.ncbi.nlm.nih.gov/pubmed/37557177 http://dx.doi.org/10.1016/j.xcrm.2023.101146 |
work_keys_str_mv | AT jiangyuming noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics AT zhoukangneng noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics AT sunzepang noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics AT wanghongyu noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics AT xiejingjing noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics AT zhangtaojun noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics AT sangshengtian noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics AT islammdtauhidul noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics AT wangjenyeu noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics AT chenchuanli noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics AT yuanqingyu noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics AT xisujuan noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics AT lituanjie noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics AT xuyikai noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics AT xiongwenjun noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics AT wangwei noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics AT liguoxin noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics AT liruijiang noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics |