Cargando…

Non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics

The tumor microenvironment (TME) plays a critical role in disease progression and is a key determinant of therapeutic response in cancer patients. Here, we propose a noninvasive approach to predict the TME status from radiological images by combining radiomics and deep learning analyses. Using multi...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Yuming, Zhou, Kangneng, Sun, Zepang, Wang, Hongyu, Xie, Jingjing, Zhang, Taojun, Sang, Shengtian, Islam, Md Tauhidul, Wang, Jen-Yeu, Chen, Chuanli, Yuan, Qingyu, Xi, Sujuan, Li, Tuanjie, Xu, Yikai, Xiong, Wenjun, Wang, Wei, Li, Guoxin, Li, Ruijiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439253/
https://www.ncbi.nlm.nih.gov/pubmed/37557177
http://dx.doi.org/10.1016/j.xcrm.2023.101146
_version_ 1785092907248648192
author Jiang, Yuming
Zhou, Kangneng
Sun, Zepang
Wang, Hongyu
Xie, Jingjing
Zhang, Taojun
Sang, Shengtian
Islam, Md Tauhidul
Wang, Jen-Yeu
Chen, Chuanli
Yuan, Qingyu
Xi, Sujuan
Li, Tuanjie
Xu, Yikai
Xiong, Wenjun
Wang, Wei
Li, Guoxin
Li, Ruijiang
author_facet Jiang, Yuming
Zhou, Kangneng
Sun, Zepang
Wang, Hongyu
Xie, Jingjing
Zhang, Taojun
Sang, Shengtian
Islam, Md Tauhidul
Wang, Jen-Yeu
Chen, Chuanli
Yuan, Qingyu
Xi, Sujuan
Li, Tuanjie
Xu, Yikai
Xiong, Wenjun
Wang, Wei
Li, Guoxin
Li, Ruijiang
author_sort Jiang, Yuming
collection PubMed
description The tumor microenvironment (TME) plays a critical role in disease progression and is a key determinant of therapeutic response in cancer patients. Here, we propose a noninvasive approach to predict the TME status from radiological images by combining radiomics and deep learning analyses. Using multi-institution cohorts of 2,686 patients with gastric cancer, we show that the radiological model accurately predicted the TME status and is an independent prognostic factor beyond clinicopathologic variables. The model further predicts the benefit from adjuvant chemotherapy for patients with localized disease. In patients treated with checkpoint blockade immunotherapy, the model predicts clinical response and further improves predictive accuracy when combined with existing biomarkers. Our approach enables noninvasive assessment of the TME, which opens the door for longitudinal monitoring and tracking response to cancer therapy. Given the routine use of radiologic imaging in oncology, our approach can be extended to many other solid tumor types.
format Online
Article
Text
id pubmed-10439253
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-104392532023-08-20 Non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics Jiang, Yuming Zhou, Kangneng Sun, Zepang Wang, Hongyu Xie, Jingjing Zhang, Taojun Sang, Shengtian Islam, Md Tauhidul Wang, Jen-Yeu Chen, Chuanli Yuan, Qingyu Xi, Sujuan Li, Tuanjie Xu, Yikai Xiong, Wenjun Wang, Wei Li, Guoxin Li, Ruijiang Cell Rep Med Article The tumor microenvironment (TME) plays a critical role in disease progression and is a key determinant of therapeutic response in cancer patients. Here, we propose a noninvasive approach to predict the TME status from radiological images by combining radiomics and deep learning analyses. Using multi-institution cohorts of 2,686 patients with gastric cancer, we show that the radiological model accurately predicted the TME status and is an independent prognostic factor beyond clinicopathologic variables. The model further predicts the benefit from adjuvant chemotherapy for patients with localized disease. In patients treated with checkpoint blockade immunotherapy, the model predicts clinical response and further improves predictive accuracy when combined with existing biomarkers. Our approach enables noninvasive assessment of the TME, which opens the door for longitudinal monitoring and tracking response to cancer therapy. Given the routine use of radiologic imaging in oncology, our approach can be extended to many other solid tumor types. Elsevier 2023-08-08 /pmc/articles/PMC10439253/ /pubmed/37557177 http://dx.doi.org/10.1016/j.xcrm.2023.101146 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Jiang, Yuming
Zhou, Kangneng
Sun, Zepang
Wang, Hongyu
Xie, Jingjing
Zhang, Taojun
Sang, Shengtian
Islam, Md Tauhidul
Wang, Jen-Yeu
Chen, Chuanli
Yuan, Qingyu
Xi, Sujuan
Li, Tuanjie
Xu, Yikai
Xiong, Wenjun
Wang, Wei
Li, Guoxin
Li, Ruijiang
Non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics
title Non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics
title_full Non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics
title_fullStr Non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics
title_full_unstemmed Non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics
title_short Non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics
title_sort non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439253/
https://www.ncbi.nlm.nih.gov/pubmed/37557177
http://dx.doi.org/10.1016/j.xcrm.2023.101146
work_keys_str_mv AT jiangyuming noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics
AT zhoukangneng noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics
AT sunzepang noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics
AT wanghongyu noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics
AT xiejingjing noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics
AT zhangtaojun noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics
AT sangshengtian noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics
AT islammdtauhidul noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics
AT wangjenyeu noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics
AT chenchuanli noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics
AT yuanqingyu noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics
AT xisujuan noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics
AT lituanjie noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics
AT xuyikai noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics
AT xiongwenjun noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics
AT wangwei noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics
AT liguoxin noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics
AT liruijiang noninvasivetumormicroenvironmentevaluationandtreatmentresponsepredictioningastriccancerusingdeeplearningradiomics