Cargando…
Non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics
The tumor microenvironment (TME) plays a critical role in disease progression and is a key determinant of therapeutic response in cancer patients. Here, we propose a noninvasive approach to predict the TME status from radiological images by combining radiomics and deep learning analyses. Using multi...
Autores principales: | Jiang, Yuming, Zhou, Kangneng, Sun, Zepang, Wang, Hongyu, Xie, Jingjing, Zhang, Taojun, Sang, Shengtian, Islam, Md Tauhidul, Wang, Jen-Yeu, Chen, Chuanli, Yuan, Qingyu, Xi, Sujuan, Li, Tuanjie, Xu, Yikai, Xiong, Wenjun, Wang, Wei, Li, Guoxin, Li, Ruijiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439253/ https://www.ncbi.nlm.nih.gov/pubmed/37557177 http://dx.doi.org/10.1016/j.xcrm.2023.101146 |
Ejemplares similares
-
Radiomics Nomogram for Prediction of Peritoneal Metastasis in Patients With Gastric Cancer
por: Huang, Weicai, et al.
Publicado: (2020) -
Biology-guided deep learning predicts prognosis and cancer immunotherapy response
por: Jiang, Yuming, et al.
Publicado: (2023) -
Radiomics Signature on Computed Tomography Imaging: Association With Lymph Node Metastasis in Patients With Gastric Cancer
por: Jiang, Yuming, et al.
Publicado: (2019) -
Non-invasive CT imaging biomarker to predict immunotherapy response in gastric cancer: a multicenter study
por: Huang, Weicai, et al.
Publicado: (2023) -
Noninvasive imaging of the tumor immune microenvironment correlates with response to immunotherapy in gastric cancer
por: Huang, Weicai, et al.
Publicado: (2022)