Cargando…

Dumbbell‐shaped brains of Polish crested chickens as a model system for the evolution of novel brain morphologies

The evolutionary history of vertebrates is replete with emergence of novel brain morphologies, including the origin of the human brain. Existing model organisms and toolkits for investigating drivers of neuroanatomical innovations have largely proceeded on mammals. As such, a compelling non‐mammalia...

Descripción completa

Detalles Bibliográficos
Autores principales: Watanabe, Akinobu, Marshall, Sylvia S., Gignac, Paul M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439378/
https://www.ncbi.nlm.nih.gov/pubmed/37165612
http://dx.doi.org/10.1111/joa.13883
Descripción
Sumario:The evolutionary history of vertebrates is replete with emergence of novel brain morphologies, including the origin of the human brain. Existing model organisms and toolkits for investigating drivers of neuroanatomical innovations have largely proceeded on mammals. As such, a compelling non‐mammalian model system would facilitate our understanding of how unique brain morphologies evolve across vertebrates. Here, we present the domestic chicken breed, white crested Polish chickens, as an avian model for investigating how novel brain morphologies originate. Most notably, these crested chickens exhibit cerebral herniation from anterodorsal displacement of the telencephalon, which results in a prominent protuberance on the dorsal aspect of the skull. We use a high‐density geometric morphometric approach on cephalic endocasts to characterize their brain morphology. Compared with standard white Leghorn chickens (WLCs) and modern avian diversity, the results demonstrate that crested chickens possess a highly variable and unique overall brain configuration. Proportional sizes of neuroanatomical regions are within the observed range of extant birds sampled in this study, but Polish chickens differ from WLCs in possessing a relatively larger cerebrum and smaller cerebellum and medulla. Given their accessibility, phylogenetic proximity, and unique neuroanatomy, we propose that crested breeds, combined with standard chickens, form a promising comparative system for investigating the emergence of novel brain morphologies.