Cargando…
Assessing the transportability of clinical prediction models for cognitive impairment using causal models
BACKGROUND: Machine learning models promise to support diagnostic predictions, but may not perform well in new settings. Selecting the best model for a new setting without available data is challenging. We aimed to investigate the transportability by calibration and discrimination of prediction mode...
Autores principales: | Fehr, Jana, Piccininni, Marco, Kurth, Tobias, Konigorski, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439645/ https://www.ncbi.nlm.nih.gov/pubmed/37598141 http://dx.doi.org/10.1186/s12874-023-02003-6 |
Ejemplares similares
-
Directed acyclic graphs and causal thinking in clinical risk prediction modeling
por: Piccininni, Marco, et al.
Publicado: (2020) -
Should Cognitive Screening Tests Be Corrected for Age and Education? Insights From a Causal Perspective
por: Piccininni, Marco, et al.
Publicado: (2022) -
Comparison of Bayesian Networks, G-estimation and linear models to estimate causal treatment effects in aggregated N-of-1 trials with carry-over effects
por: Gärtner, Thomas, et al.
Publicado: (2023) -
Genetic association analysis based on a joint model of gene expression and blood pressure
por: Konigorski, Stefan, et al.
Publicado: (2016) -
Estimation of migraine prevalence considering active and inactive states across different age groups
por: Piccininni, Marco, et al.
Publicado: (2023)