Cargando…
LIDER: cell embedding based deep neural network classifier for supervised cell type identification
BACKGROUND: Automatic cell type identification has been an urgent task for the rapid development of single-cell RNA-seq techniques. Generally, the current approach for cell type identification is to generate cell clusters by unsupervised clustering and later assign labels to each cell cluster with m...
Autores principales: | Tang, Yachen, Li, Xuefeng, Shi, Mingguang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439717/ https://www.ncbi.nlm.nih.gov/pubmed/37601262 http://dx.doi.org/10.7717/peerj.15862 |
Ejemplares similares
-
Supervised deep learning embeddings for the prediction of cervical cancer diagnosis
por: Fernandes, Kelwin, et al.
Publicado: (2018) -
Deep-learning convolutional neural networks with transfer learning accurately classify COVID-19 lung infection on portable chest radiographs
por: Kikkisetti, Shreeja, et al.
Publicado: (2020) -
Ensemble of adapted convolutional neural networks (CNN) methods for classifying colon histopathological images
por: Albashish, Dheeb
Publicado: (2022) -
An ensemble machine learning model based on multiple filtering and supervised attribute clustering algorithm for classifying cancer samples
por: Bose, Shilpi, et al.
Publicado: (2021) -
TOXIFY: a deep learning approach to classify animal venom proteins
por: Cole, T. Jeffrey, et al.
Publicado: (2019)