Cargando…
Development of an artificial intelligence bacteremia prediction model and evaluation of its impact on physician predictions focusing on uncertainty
Prediction of bacteremia is a clinically important but challenging task. An artificial intelligence (AI) model has the potential to facilitate early bacteremia prediction, aiding emergency department (ED) physicians in making timely decisions and reducing unnecessary medical costs. In this study, we...
Autores principales: | Choi, Dong Hyun, Lim, Min Hyuk, Kim, Ki Hong, Shin, Sang Do, Hong, Ki Jeong, Kim, Sungwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439897/ https://www.ncbi.nlm.nih.gov/pubmed/37598221 http://dx.doi.org/10.1038/s41598-023-40708-2 |
Ejemplares similares
-
Artificial Intelligence-Enabled ECG Algorithm for the Prediction of Coronary Artery Calcification
por: Han, Changho, et al.
Publicado: (2022) -
Uncertainty in Artificial Intelligence
por: D'Ambrosio, Bruce, et al.
Publicado: (2014) -
Uncertainty in Artificial Intelligence
por: MKP
Publicado: (2014) -
Forecasting respiratory infectious outbreaks using ED-based syndromic surveillance for febrile ED visits in a Metropolitan City
por: Kim, Tae Han, et al.
Publicado: (2019) -
Artificial intelligence algorithm for predicting cardiac arrest using electrocardiography
por: Kwon, Joon-myoung, et al.
Publicado: (2020)