Cargando…
APOGEE 2: multi-layer machine-learning model for the interpretable prediction of mitochondrial missense variants
Mitochondrial dysfunction has pleiotropic effects and is frequently caused by mitochondrial DNA mutations. However, factors such as significant variability in clinical manifestations make interpreting the pathogenicity of variants in the mitochondrial genome challenging. Here, we present APOGEE 2, a...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439926/ https://www.ncbi.nlm.nih.gov/pubmed/37598215 http://dx.doi.org/10.1038/s41467-023-40797-7 |
_version_ | 1785093059867836416 |
---|---|
author | Bianco, Salvatore Daniele Parca, Luca Petrizzelli, Francesco Biagini, Tommaso Giovannetti, Agnese Liorni, Niccolò Napoli, Alessandro Carella, Massimo Procaccio, Vincent Lott, Marie T. Zhang, Shiping Vescovi, Angelo Luigi Wallace, Douglas C. Caputo, Viviana Mazza, Tommaso |
author_facet | Bianco, Salvatore Daniele Parca, Luca Petrizzelli, Francesco Biagini, Tommaso Giovannetti, Agnese Liorni, Niccolò Napoli, Alessandro Carella, Massimo Procaccio, Vincent Lott, Marie T. Zhang, Shiping Vescovi, Angelo Luigi Wallace, Douglas C. Caputo, Viviana Mazza, Tommaso |
author_sort | Bianco, Salvatore Daniele |
collection | PubMed |
description | Mitochondrial dysfunction has pleiotropic effects and is frequently caused by mitochondrial DNA mutations. However, factors such as significant variability in clinical manifestations make interpreting the pathogenicity of variants in the mitochondrial genome challenging. Here, we present APOGEE 2, a mitochondrially-centered ensemble method designed to improve the accuracy of pathogenicity predictions for interpreting missense mitochondrial variants. Built on the joint consensus recommendations by the American College of Medical Genetics and Genomics/Association for Molecular Pathology, APOGEE 2 features an improved machine learning method and a curated training set for enhanced performance metrics. It offers region-wise assessments of genome fragility and mechanistic analyses of specific amino acids that cause perceptible long-range effects on protein structure. With clinical and research use in mind, APOGEE 2 scores and pathogenicity probabilities are precompiled and available in MitImpact. APOGEE 2’s ability to address challenges in interpreting mitochondrial missense variants makes it an essential tool in the field of mitochondrial genetics. |
format | Online Article Text |
id | pubmed-10439926 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-104399262023-08-21 APOGEE 2: multi-layer machine-learning model for the interpretable prediction of mitochondrial missense variants Bianco, Salvatore Daniele Parca, Luca Petrizzelli, Francesco Biagini, Tommaso Giovannetti, Agnese Liorni, Niccolò Napoli, Alessandro Carella, Massimo Procaccio, Vincent Lott, Marie T. Zhang, Shiping Vescovi, Angelo Luigi Wallace, Douglas C. Caputo, Viviana Mazza, Tommaso Nat Commun Article Mitochondrial dysfunction has pleiotropic effects and is frequently caused by mitochondrial DNA mutations. However, factors such as significant variability in clinical manifestations make interpreting the pathogenicity of variants in the mitochondrial genome challenging. Here, we present APOGEE 2, a mitochondrially-centered ensemble method designed to improve the accuracy of pathogenicity predictions for interpreting missense mitochondrial variants. Built on the joint consensus recommendations by the American College of Medical Genetics and Genomics/Association for Molecular Pathology, APOGEE 2 features an improved machine learning method and a curated training set for enhanced performance metrics. It offers region-wise assessments of genome fragility and mechanistic analyses of specific amino acids that cause perceptible long-range effects on protein structure. With clinical and research use in mind, APOGEE 2 scores and pathogenicity probabilities are precompiled and available in MitImpact. APOGEE 2’s ability to address challenges in interpreting mitochondrial missense variants makes it an essential tool in the field of mitochondrial genetics. Nature Publishing Group UK 2023-08-19 /pmc/articles/PMC10439926/ /pubmed/37598215 http://dx.doi.org/10.1038/s41467-023-40797-7 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Bianco, Salvatore Daniele Parca, Luca Petrizzelli, Francesco Biagini, Tommaso Giovannetti, Agnese Liorni, Niccolò Napoli, Alessandro Carella, Massimo Procaccio, Vincent Lott, Marie T. Zhang, Shiping Vescovi, Angelo Luigi Wallace, Douglas C. Caputo, Viviana Mazza, Tommaso APOGEE 2: multi-layer machine-learning model for the interpretable prediction of mitochondrial missense variants |
title | APOGEE 2: multi-layer machine-learning model for the interpretable prediction of mitochondrial missense variants |
title_full | APOGEE 2: multi-layer machine-learning model for the interpretable prediction of mitochondrial missense variants |
title_fullStr | APOGEE 2: multi-layer machine-learning model for the interpretable prediction of mitochondrial missense variants |
title_full_unstemmed | APOGEE 2: multi-layer machine-learning model for the interpretable prediction of mitochondrial missense variants |
title_short | APOGEE 2: multi-layer machine-learning model for the interpretable prediction of mitochondrial missense variants |
title_sort | apogee 2: multi-layer machine-learning model for the interpretable prediction of mitochondrial missense variants |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439926/ https://www.ncbi.nlm.nih.gov/pubmed/37598215 http://dx.doi.org/10.1038/s41467-023-40797-7 |
work_keys_str_mv | AT biancosalvatoredaniele apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants AT parcaluca apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants AT petrizzellifrancesco apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants AT biaginitommaso apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants AT giovannettiagnese apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants AT liorniniccolo apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants AT napolialessandro apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants AT carellamassimo apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants AT procacciovincent apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants AT lottmariet apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants AT zhangshiping apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants AT vescoviangeloluigi apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants AT wallacedouglasc apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants AT caputoviviana apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants AT mazzatommaso apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants |