Cargando…

APOGEE 2: multi-layer machine-learning model for the interpretable prediction of mitochondrial missense variants

Mitochondrial dysfunction has pleiotropic effects and is frequently caused by mitochondrial DNA mutations. However, factors such as significant variability in clinical manifestations make interpreting the pathogenicity of variants in the mitochondrial genome challenging. Here, we present APOGEE 2, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Bianco, Salvatore Daniele, Parca, Luca, Petrizzelli, Francesco, Biagini, Tommaso, Giovannetti, Agnese, Liorni, Niccolò, Napoli, Alessandro, Carella, Massimo, Procaccio, Vincent, Lott, Marie T., Zhang, Shiping, Vescovi, Angelo Luigi, Wallace, Douglas C., Caputo, Viviana, Mazza, Tommaso
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439926/
https://www.ncbi.nlm.nih.gov/pubmed/37598215
http://dx.doi.org/10.1038/s41467-023-40797-7
_version_ 1785093059867836416
author Bianco, Salvatore Daniele
Parca, Luca
Petrizzelli, Francesco
Biagini, Tommaso
Giovannetti, Agnese
Liorni, Niccolò
Napoli, Alessandro
Carella, Massimo
Procaccio, Vincent
Lott, Marie T.
Zhang, Shiping
Vescovi, Angelo Luigi
Wallace, Douglas C.
Caputo, Viviana
Mazza, Tommaso
author_facet Bianco, Salvatore Daniele
Parca, Luca
Petrizzelli, Francesco
Biagini, Tommaso
Giovannetti, Agnese
Liorni, Niccolò
Napoli, Alessandro
Carella, Massimo
Procaccio, Vincent
Lott, Marie T.
Zhang, Shiping
Vescovi, Angelo Luigi
Wallace, Douglas C.
Caputo, Viviana
Mazza, Tommaso
author_sort Bianco, Salvatore Daniele
collection PubMed
description Mitochondrial dysfunction has pleiotropic effects and is frequently caused by mitochondrial DNA mutations. However, factors such as significant variability in clinical manifestations make interpreting the pathogenicity of variants in the mitochondrial genome challenging. Here, we present APOGEE 2, a mitochondrially-centered ensemble method designed to improve the accuracy of pathogenicity predictions for interpreting missense mitochondrial variants. Built on the joint consensus recommendations by the American College of Medical Genetics and Genomics/Association for Molecular Pathology, APOGEE 2 features an improved machine learning method and a curated training set for enhanced performance metrics. It offers region-wise assessments of genome fragility and mechanistic analyses of specific amino acids that cause perceptible long-range effects on protein structure. With clinical and research use in mind, APOGEE 2 scores and pathogenicity probabilities are precompiled and available in MitImpact. APOGEE 2’s ability to address challenges in interpreting mitochondrial missense variants makes it an essential tool in the field of mitochondrial genetics.
format Online
Article
Text
id pubmed-10439926
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-104399262023-08-21 APOGEE 2: multi-layer machine-learning model for the interpretable prediction of mitochondrial missense variants Bianco, Salvatore Daniele Parca, Luca Petrizzelli, Francesco Biagini, Tommaso Giovannetti, Agnese Liorni, Niccolò Napoli, Alessandro Carella, Massimo Procaccio, Vincent Lott, Marie T. Zhang, Shiping Vescovi, Angelo Luigi Wallace, Douglas C. Caputo, Viviana Mazza, Tommaso Nat Commun Article Mitochondrial dysfunction has pleiotropic effects and is frequently caused by mitochondrial DNA mutations. However, factors such as significant variability in clinical manifestations make interpreting the pathogenicity of variants in the mitochondrial genome challenging. Here, we present APOGEE 2, a mitochondrially-centered ensemble method designed to improve the accuracy of pathogenicity predictions for interpreting missense mitochondrial variants. Built on the joint consensus recommendations by the American College of Medical Genetics and Genomics/Association for Molecular Pathology, APOGEE 2 features an improved machine learning method and a curated training set for enhanced performance metrics. It offers region-wise assessments of genome fragility and mechanistic analyses of specific amino acids that cause perceptible long-range effects on protein structure. With clinical and research use in mind, APOGEE 2 scores and pathogenicity probabilities are precompiled and available in MitImpact. APOGEE 2’s ability to address challenges in interpreting mitochondrial missense variants makes it an essential tool in the field of mitochondrial genetics. Nature Publishing Group UK 2023-08-19 /pmc/articles/PMC10439926/ /pubmed/37598215 http://dx.doi.org/10.1038/s41467-023-40797-7 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Bianco, Salvatore Daniele
Parca, Luca
Petrizzelli, Francesco
Biagini, Tommaso
Giovannetti, Agnese
Liorni, Niccolò
Napoli, Alessandro
Carella, Massimo
Procaccio, Vincent
Lott, Marie T.
Zhang, Shiping
Vescovi, Angelo Luigi
Wallace, Douglas C.
Caputo, Viviana
Mazza, Tommaso
APOGEE 2: multi-layer machine-learning model for the interpretable prediction of mitochondrial missense variants
title APOGEE 2: multi-layer machine-learning model for the interpretable prediction of mitochondrial missense variants
title_full APOGEE 2: multi-layer machine-learning model for the interpretable prediction of mitochondrial missense variants
title_fullStr APOGEE 2: multi-layer machine-learning model for the interpretable prediction of mitochondrial missense variants
title_full_unstemmed APOGEE 2: multi-layer machine-learning model for the interpretable prediction of mitochondrial missense variants
title_short APOGEE 2: multi-layer machine-learning model for the interpretable prediction of mitochondrial missense variants
title_sort apogee 2: multi-layer machine-learning model for the interpretable prediction of mitochondrial missense variants
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439926/
https://www.ncbi.nlm.nih.gov/pubmed/37598215
http://dx.doi.org/10.1038/s41467-023-40797-7
work_keys_str_mv AT biancosalvatoredaniele apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants
AT parcaluca apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants
AT petrizzellifrancesco apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants
AT biaginitommaso apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants
AT giovannettiagnese apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants
AT liorniniccolo apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants
AT napolialessandro apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants
AT carellamassimo apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants
AT procacciovincent apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants
AT lottmariet apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants
AT zhangshiping apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants
AT vescoviangeloluigi apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants
AT wallacedouglasc apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants
AT caputoviviana apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants
AT mazzatommaso apogee2multilayermachinelearningmodelfortheinterpretablepredictionofmitochondrialmissensevariants